Algebraic structure → Group theory Group theory |
---|
A group is a set together with an associative operation that admits an identity element and such that there exists an inverse for every element.
Throughout this glossary, we use e to denote the identity element of a group.
with
Both subgroups and normal subgroups of a given group form a complete lattice under inclusion of subsets; this property and some related results are described by the lattice theorem.
Kernel of a group homomorphism. It is the preimage of the identity in the codomain of a group homomorphism. Every normal subgroup is the kernel of a group homomorphism and vice versa.
Direct product , direct sum , and semidirect product of groups. These are ways of combining groups to construct new groups; please refer to the corresponding links for explanation.
Finitely generated group . If there exists a finite set S such that ⟨S⟩ = G, then G is said to be finitely generated. If S can be taken to have just one element, G is a cyclic group of finite order, an infinite cyclic group, or possibly a group {e} with just one element.
Simple group . Simple groups are those groups having only e and themselves as normal subgroups. The name is misleading because a simple group can in fact be very complex. An example is the monster group, whose order is about 1054. Every finite group is built up from simple groups via group extensions, so the study of finite simple groups is central to the study of all finite groups. The finite simple groups are known and classified.
The structure of any finite abelian group is relatively simple; every finite abelian group is the direct sum of cyclic p-groups. This can be extended to a complete classification of all finitely generated abelian groups, that is all abelian groups that are generated by a finite set.
The situation is much more complicated for the non-abelian groups.
Free group . Given any set A, one can define a group as the smallest group containing the free semigroup of A. The group consists of the finite strings (words) that can be composed by elements from A, together with other elements that are necessary to form a group. Multiplication of strings is defined by concatenation, for instance (abb) • (bca) = abbbca.
Every group (G, •) is basically a factor group of a free group generated by G. Refer to Presentation of a group for more explanation. One can then ask algorithmic questions about these presentations, such as:
The general case of this is the word problem, and several of these questions are in fact unsolvable by any general algorithm.
General linear group , denoted by GL(n, F), is the group of n-by-n invertible matrices, where the elements of the matrices are taken from a field F such as the real numbers or the complex numbers.
Group representation (not to be confused with the presentation of a group). A group representation is a homomorphism from a group to a general linear group. One basically tries to "represent" a given abstract group as a concrete group of invertible matrices, which is much easier to study.
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.
In abstract algebra, a normal subgroup is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and . The usual notation for this relation is .
In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted H ≤ G, read as "H is a subgroup of G".
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .
In mathematics, especially group theory, two elements and of a group are conjugate if there is an element in the group such that This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under for all elements in the group.
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by An or Alt(n).
In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups.
In mathematics, the free groupFS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms. The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses.
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.
In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula
In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many naturally occurring modules are not semisimple, hence cannot be decomposed into a direct sum of simple modules. A composition series of a module M is a finite increasing filtration of M by submodules such that the successive quotients are simple and serves as a replacement of the direct sum decomposition of M into its simple constituents.
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element a of a group, is thus the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a. If no such m exists, the order of a is infinite.
In mathematics, specifically group theory, a subgroup series of a group is a chain of subgroups:
In mathematics, a quasisimple group is a group that is a perfect central extension E of a simple group S. In other words, there is a short exact sequence
In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.
In mathematics, a group is supersolvable if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability.
In group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements.