In mathematics, in the field of group theory, the perfect core (or perfect radical) of a group is its largest perfect subgroup. [1] Its existence is guaranteed by the fact that the subgroup generated by a family of perfect subgroups is again a perfect subgroup. The perfect core is also the point where the transfinite derived series stabilizes for any group.
A group whose perfect core is trivial is termed a hypoabelian group. Every solvable group is hypoabelian, and so is every free group. More generally, every residually solvable group is hypoabelian.
The quotient of a group G by its perfect core is hypoabelian, and is called the hypoabelianization of G.
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.
In mathematics, a Lie group is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group.
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.
In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}.
A group is a set together with an associative operation which admits an identity element and such that every element has an inverse.
In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups.
In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .
In mathematics, a topological group G is called a discrete group if there is no limit point in it. Equivalently, the group G is discrete if and only if its identity is isolated.
In mathematics, more specifically in group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no non-trivial abelian quotients. In symbols, a perfect group is one such that G(1) = G, or equivalently one such that Gab = {1}.
In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the p-core of a group.
In mathematics, especially in the area of algebra known as group theory, the Fitting subgroupF of a finite group G, named after Hans Fitting, is the unique largest normal nilpotent subgroup of G. Intuitively, it represents the smallest subgroup which "controls" the structure of G when G is solvable. When G is not solvable, a similar role is played by the generalized Fitting subgroupF*, which is generated by the Fitting subgroup and the components of G.
In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.
In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.
In mathematics, specifically group theory, a Hall subgroup of a finite group G is a subgroup whose order is coprime to its index. They were introduced by the group theorist Philip Hall (1928).
In mathematics, a (B, N) pair is a structure on groups of Lie type that allows one to give uniform proofs of many results, instead of giving a large number of case-by-case proofs. Roughly speaking, it shows that all such groups are similar to the general linear group over a field. They were introduced by the mathematician Jacques Tits, and are also sometimes known as Tits systems.
In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection.
In mathematics, a polycyclic group is a solvable group that satisfies the maximal condition on subgroups. Polycyclic groups are finitely presented, which makes them interesting from a computational point of view.
In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings, it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal.