Fitting length

Last updated

In mathematics, especially in the area of algebra known as group theory, the Fitting length (or nilpotent length) measures how far a solvable group is from being nilpotent. The concept is named after Hans Fitting, due to his investigations of nilpotent normal subgroups.

Contents

Definition

A Fitting chain (or Fitting series or nilpotent series) for a group is a subnormal series with nilpotent quotients. In other words, a finite sequence of subgroups including both the whole group and the trivial group, such that each is a normal subgroup of the previous one, and such that the quotients of successive terms are nilpotent groups.

The Fitting length or nilpotent length of a group is defined to be the smallest possible length of a Fitting chain, if one exists.

Upper and lower Fitting series

Just as the upper central series and lower central series are extremal among central series, there are analogous series extremal among nilpotent series.

For a finite group H, the Fitting subgroup Fit(H) is the maximal normal nilpotent subgroup, while the minimal subgroup such that the quotient by it is nilpotent is γ(H), the intersection of the (finite) lower central series, which is called the nilpotent residual. These correspond to the center and the commutator subgroup (for upper and lower central series, respectively). These do not hold for infinite groups, so for the sequel, assume all groups to be finite.

The upper Fitting series of a finite group is the sequence of characteristic subgroups Fitn(G) defined by Fit0(G) = 1, and Fitn+1(G)/Fitn(G) = Fit(G/Fitn(G)). It is an ascending nilpotent series, at each step taking the maximal possible subgroup.

The lower Fitting series of a finite group G is the sequence of characteristic subgroups Fn(G) defined by F0(G) = G, and Fn+1(G) = γ(Fn(G)). It is a descending nilpotent series, at each step taking the minimal possible subgroup.

Examples

Properties

More information can be found in ( Huppert 1967 , Kap. III, §4).

Connection between central series and Fitting series

Combining the lower Fitting series and lower central series on a solvable group yields a series with coarse and fine divisions, like the coarse and fine marks on a ruler. Steel ruler closeup.jpg
Combining the lower Fitting series and lower central series on a solvable group yields a series with coarse and fine divisions, like the coarse and fine marks on a ruler.

What central series do for nilpotent groups, Fitting series do for solvable groups. A group has a central series if and only if it is nilpotent, and a Fitting series if and only if it is solvable.

Given a solvable group, the lower Fitting series is a "coarser" division than the lower central series: the lower Fitting series gives a series for the whole group, while the lower central series descends only from the whole group to the first term of the Fitting series.

The lower Fitting series proceeds:

G = F0F1 ⊵ ⋯ ⊵ 1,

while the lower central series subdivides the first step,

G = G1G2 ⊵ ⋯ ⊵ F1,

and is a lift of the lower central series for the first quotient F0/F1, which is nilpotent.

Proceeding in this way (lifting the lower central series for each quotient of the Fitting series) yields a subnormal series:

G = G1G2 ⊵ ⋯ ⊵ F1 = F1,1F1,2 ⊵ ⋯ ⊵ F2 = F2,1 ⊵ ⋯ ⊵ Fn = 1,

like the coarse and fine divisions on a ruler.

The successive quotients are abelian, showing the equivalence between being solvable and having a Fitting series.

See also

Related Research Articles

Solvable group group that can be constructed from abelian groups using extensions; a group whose derived series terminates in the trivial subgroup

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

Nilpotent group

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}.

Glossary of group theory

A group is a set together with an associative operation which admits an identity element and such that every element has an inverse.

In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many naturally occurring modules are not semisimple, hence cannot be decomposed into a direct sum of simple modules. A composition series of a module M is a finite increasing filtration of M by submodules such that the successive quotients are simple and serves as a replacement of the direct sum decomposition of M into its simple constituents.

In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov, characterizes finitely generated groups of polynomial growth, as those groups which have nilpotent subgroups of finite index.

In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the p-core of a group.

In mathematics, especially in the area of algebra known as group theory, the Fitting subgroupF of a finite group G, named after Hans Fitting, is the unique largest normal nilpotent subgroup of G. Intuitively, it represents the smallest subgroup which "controls" the structure of G when G is solvable. When G is not solvable, a similar role is played by the generalized Fitting subgroupF*, which is generated by the Fitting subgroup and the components of G.

In mathematics, specifically group theory, a subgroup series is a chain of subgroups:

Frobenius group transitive permutation group with restrictions on fixed point behavior

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

In mathematics, a metabelian group is a group whose commutator subgroup is abelian. Equivalently, a group G is metabelian if and only if there is an abelian normal subgroup A such that the quotient group G/A is abelian.

In mathematics, in the field of group theory, a subgroup H of a given group G is a subnormal subgroup of G if there is a finite chain of subgroups of the group, each one normal in the next, beginning at H and ending at G.

Lattice of subgroups

In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection.

In mathematics, a polycyclic group is a solvable group that satisfies the maximal condition on subgroups. Polycyclic groups are finitely presented, and this makes them interesting from a computational point of view.

In mathematics, in the area of abstract algebra known as group theory, an A-group is a type of group that is similar to abelian groups. The groups were first studied in the 1940s by Philip Hall, and are still studied today. A great deal is known about their structure.

In mathematics, a group is supersolvable if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability.

In mathematics, in the area of algebra known as group theory, a more than fifty-year effort was made to answer a conjecture of : are all groups of odd order solvable? Progress was made by showing that CA-groups, groups in which the centralizer of a non-identity element is abelian, of odd order are solvable. Further progress was made showing that CN-groups, groups in which the centralizer of a non-identity element is nilpotent, of odd order are solvable. The complete solution was given in, but further work on CN-groups was done in, giving more detailed information about the structure of these groups. For instance, a non-solvable CN-group G is such that its largest solvable normal subgroup O(G) is a 2-group, and the quotient is a group of even order.

In mathematics, in the field of group theory, a T-group is a group in which the property of normality is transitive, that is, every subnormal subgroup is normal. Here are some facts about T-groups:

In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, this is an explicit expression that the group is a nilpotent group, and for matrix rings, this is an explicit expression that in some basis the matrix ring consists entirely of upper triangular matrices with constant diagonal.

In mathematics, a 3-step group is a special sort of group of Fitting length at most 3, that is used in the classification of CN groups and in the Feit–Thompson theorem. The definition of a 3-step group in these two cases is slightly different.

References