In mathematics, a Zassenhaus group, named after Hans Zassenhaus, is a certain sort of doubly transitive permutation group very closely related to rank-1 groups of Lie type.
A Zassenhaus group is a permutation group G on a finite set X with the following three properties:
The degree of a Zassenhaus group is the number of elements of X.
Some authors omit the third condition that G has no regular normal subgroup. This condition is put in to eliminate some "degenerate" cases. The extra examples one gets by omitting it are either Frobenius groups or certain groups of degree 2p and order 2p(2p − 1)p for a prime p, that are generated by all semilinear mappings and Galois automorphisms of a field of order 2p.
We let q = pf be a power of a prime p, and write Fq for the finite field of order q. Suzuki proved that any Zassenhaus group is of one of the following four types:
The degree of these groups is q + 1 in the first three cases, q2 + 1 in the last case.
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .
In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem.
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups M11, M12, M22, M23 and M24 introduced by Mathieu. They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered.
In mathematics, especially in the group theoretic area of algebra, the projective linear group is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group
In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).
In mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete.
In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.
In mathematics, a Ree group is a group of Lie type over a finite field constructed by Ree from an exceptional automorphism of a Dynkin diagram that reverses the direction of the multiple bonds, generalizing the Suzuki groups found by Suzuki using a different method. They were the last of the infinite families of finite simple groups to be discovered.
In mathematics, a permutation group G acting on a non-empty finite set X is called primitive if G acts transitively on X and the only partitions the G-action preserves are the trivial partitions into either a single set or into |X| singleton sets. Otherwise, if G is transitive and G does preserve a nontrivial partition, G is called imprimitive.
In mathematics, in the realm of group theory, a group is said to be a CA-group or centralizer abelian group if the centralizer of any nonidentity element is an abelian subgroup. Finite CA-groups are of historical importance as an early example of the type of classifications that would be used in the Feit–Thompson theorem and the classification of finite simple groups. Several important infinite groups are CA-groups, such as free groups, Tarski monsters, and some Burnside groups, and the locally finite CA-groups have been classified explicitly. CA-groups are also called commutative-transitive groups because commutativity is a transitive relation amongst the non-identity elements of a group if and only if the group is a CA-group.
In group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements.
In the area of modern algebra known as group theory, the Mathieu groupM12 is a sporadic simple group of order
In the area of modern algebra known as group theory, the Mathieu groupM24 is a sporadic simple group of order
In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups:
In finite group theory, an area of abstract algebra, a strongly embedded subgroup of a finite group G is a proper subgroup H of even order such that H ∩ Hg has odd order whenever g is not in H. The Bender–Suzuki theorem, proved by Bender (1971) extending work of Suzuki (1962, 1964), classifies the groups G with a strongly embedded subgroup H. It states that either
In mathematical group theory, a C-group is a group such that the centralizer of any involution has a normal Sylow 2-subgroup. They include as special cases CIT-groups where the centralizer of any involution is a 2-group, and TI-groups where any Sylow 2-subgroups have trivial intersection.
In the area of modern algebra known as group theory, the Suzuki groups, denoted by Sz(22n+1), 2B2(22n+1), Suz(22n+1), or G(22n+1), form an infinite family of groups of Lie type found by Suzuki (1960), that are simple for n ≥ 1. These simple groups are the only finite non-abelian ones with orders not divisible by 3.
In mathematical representation theory, coherence is a property of sets of characters that allows one to extend an isometry from the degree-zero subspace of a space of characters to the whole space. The general notion of coherence was developed by Feit, as a generalization of the proof by Frobenius of the existence of a Frobenius kernel of a Frobenius group and of the work of Brauer and Suzuki on exceptional characters. Feit & Thompson developed coherence further in the proof of the Feit–Thompson theorem that all groups of odd order are solvable.