Direct sum of topological groups

Last updated

In mathematics, a topological group is called the topological direct sum [1] of two subgroups and if the map

Contents

is a topological isomorphism, meaning that it is a homeomorphism and a group isomorphism.

Definition

More generally, is called the direct sum of a finite set of subgroups of the map

is a topological isomorphism.

If a topological group is the topological direct sum of the family of subgroups then in particular, as an abstract group (without topology) it is also the direct sum (in the usual way) of the family

Topological direct summands

Given a topological group we say that a subgroup is a topological direct summand of (or that splits topologically from ) if and only if there exist another subgroup such that is the direct sum of the subgroups and

A the subgroup is a topological direct summand if and only if the extension of topological groups

splits, where is the natural inclusion and is the natural projection.

Examples

Suppose that is a locally compact abelian group that contains the unit circle as a subgroup. Then is a topological direct summand of The same assertion is true for the real numbers [2]

See also

Related Research Articles

Abelian group Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one talks about the product in category theory, which formalizes these notions.

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In mathematics, specifically abstract algebra, the isomorphism theorems are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.

Semidirect product Operation in group theory

In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product:

In abstract algebra, an abelian group is called finitely generated if there exist finitely many elements in such that every in can be written in the form for some integers . In this case, we say that the set is a generating set of or that generate.

Direct sum of groups Means of constructing a group from two subgroups

In mathematics, a group G is called the direct sum of two normal subgroups with trivial intersection if it is generated by the subgroups. In abstract algebra, this method of construction of groups can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information. A group which can be expressed as a direct sum of non-trivial subgroups is called decomposable, and if a group cannot be expressed as such a direct sum then it is called indecomposable.

In mathematics, and more specifically in homological algebra, the splitting lemma states that in any abelian category, the following statements are equivalent for a short exact sequence

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup. Torsion-free abelian groups of rank 1 have been completely classified. However, the theory of abelian groups of higher rank is more involved.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

In mathematics, especially in the field of module theory, the concept of pure submodule provides a generalization of direct summand, a type of particularly well-behaved piece of a module. Pure modules are complementary to flat modules and generalize Prüfer's notion of pure subgroups. While flat modules are those modules which leave short exact sequences exact after tensoring, a pure submodule defines a short exact sequence that remains exact after tensoring with any module. Similarly a flat module is a direct limit of projective modules, and a pure exact sequence is a direct limit of split exact sequences.

Hawaiian earring Topological space defined by the union of circles

In mathematics, the Hawaiian earring is the topological space defined by the union of circles in the Euclidean plane with center and radius for endowed with the subspace topology:

In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle EGBG. As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.

The direct sum is an operation in abstract algebra, a branch of mathematics. For example, the direct sum , where is real coordinate space, is the Cartesian plane, . To see how the direct sum is used in abstract algebra, consider a more elementary structure in abstract algebra, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and with the following structure. To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise. A similar process can be used to form the direct sum of two vector spaces or two modules.

In mathematics, the classifying space for the unitary group U(n) is a space BU(n) together with a universal bundle EU(n) such that any hermitian bundle on a paracompact space X is the pull-back of EU(n) by a map X → BU(n) unique up to homotopy.

In mathematics, the Leray–Hirsch theorem is a basic result on the algebraic topology of fiber bundles. It is named after Jean Leray and Guy Hirsch, who independently proved it in the late 1940s. It can be thought of as a mild generalization of the Künneth formula, which computes the cohomology of a product space as a tensor product of the cohomologies of the direct factors. It is a very special case of the Leray spectral sequence.

In mathematics, more specifically in topological groups, an extension of topological groups, or a topological extension, is a short exact sequence where and are topological groups and and are continuous homomorphisms which are also open onto their images. Every extension of topological groups is therefore a group extension.

References

  1. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I, second edition, Grundlehren der Mathematischen Wissenschaften, 115, Springer, Berlin, 1979. MR0551496 (81k:43001)
  2. Armacost, David L. The structure of locally compact abelian groups. Monographs and Textbooks in Pure and Applied Mathematics, 68. Marcel Dekker, Inc., New York, 1981. vii+154 pp. ISBN   0-8247-1507-1 MR0637201 (83h:22010)