In mathematics, a symplectic vector space is a vector space over a field (for example the real numbers ) equipped with a symplectic bilinear form.
A symplectic bilinear form is a mapping that is
If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation. In this case every symplectic form is a symmetric form, but not vice versa.
Working in a fixed basis, can be represented by a matrix. The conditions above are equivalent to this matrix being skew-symmetric, nonsingular, and hollow (all diagonal entries are zero). This should not be confused with a symplectic matrix, which represents a symplectic transformation of the space. If is finite-dimensional, then its dimension must necessarily be even since every skew-symmetric, hollow matrix of odd size has determinant zero. Notice that the condition that the matrix be hollow is not redundant if the characteristic of the field is 2. A symplectic form behaves quite differently from a symmetric form, for example, the scalar product on Euclidean vector spaces.
The standard symplectic space is with the symplectic form given by a nonsingular, skew-symmetric matrix. Typically is chosen to be the block matrix
where In is the n × n identity matrix. In terms of basis vectors (x1, ..., xn, y1, ..., yn):
A modified version of the Gram–Schmidt process shows that any finite-dimensional symplectic vector space has a basis such that takes this form, often called a Darboux basis or symplectic basis.
Sketch of process:
Start with an arbitrary basis , and represent the dual of each basis vector by the dual basis: . This gives us a matrix with entries . Solve for its null space. Now for any in the null space, we have , so the null space gives us the degenerate subspace .
Now arbitrarily pick a complementary such that , and let be a basis of . Since , and , WLOG . Now scale so that . Then define for each of . Iterate.
Notice that this method applies for symplectic vector space over any field, not just the field of real numbers.
Case of real or complex field:
When the space is over the field of real numbers, then we can modify the modified Gram-Schmidt process as follows: Start the same way. Let be an orthonormal basis (with respect to the usual inner product on ) of . Since , and , WLOG . Now multiply by a sign, so that . Then define for each of , then scale each so that it has norm one. Iterate.
Similarly, for the field of complex numbers, we may choose a unitary basis. This proves the spectral theory of antisymmetric matrices.
There is another way to interpret this standard symplectic form. Since the model space R2n used above carries much canonical structure which might easily lead to misinterpretation, we will use "anonymous" vector spaces instead. Let V be a real vector space of dimension n and V∗ its dual space. Now consider the direct sum W = V ⊕ V∗ of these spaces equipped with the following form:
Now choose any basis (v1, ..., vn) of V and consider its dual basis
We can interpret the basis vectors as lying in W if we write xi = (vi, 0) and yi = (0, vi∗). Taken together, these form a complete basis of W,
The form ω defined here can be shown to have the same properties as in the beginning of this section. On the other hand, every symplectic structure is isomorphic to one of the form V ⊕ V∗. The subspace V is not unique, and a choice of subspace V is called a polarization. The subspaces that give such an isomorphism are called Lagrangian subspaces or simply Lagrangians.
Explicitly, given a Lagrangian subspace as defined below, then a choice of basis (x1, ..., xn) defines a dual basis for a complement, by ω(xi, yj) = δij.
Just as every symplectic structure is isomorphic to one of the form V ⊕ V∗, every complex structure on a vector space is isomorphic to one of the form V ⊕ V. Using these structures, the tangent bundle of an n-manifold, considered as a 2n-manifold, has an almost complex structure, and the cotangent bundle of an n-manifold, considered as a 2n-manifold, has a symplectic structure: T∗(T∗M)p = Tp(M) ⊕ (Tp(M))∗.
The complex analog to a Lagrangian subspace is a real subspace, a subspace whose complexification is the whole space: W = V ⊕ JV. As can be seen from the standard symplectic form above, every symplectic form on R2n is isomorphic to the imaginary part of the standard complex (Hermitian) inner product on Cn (with the convention of the first argument being anti-linear).
Let ω be an alternating bilinear form on an n-dimensional real vector space V, ω ∈ Λ2(V). Then ω is non-degenerate if and only if n is even and ωn/2 = ω ∧ ... ∧ ω is a volume form. A volume form on a n-dimensional vector space V is a non-zero multiple of the n-form e1∗ ∧ ... ∧ en∗ where e1, e2, ..., en is a basis of V.
For the standard basis defined in the previous section, we have
By reordering, one can write
Authors variously define ωn or (−1)n/2ωn as the standard volume form. An occasional factor of n! may also appear, depending on whether the definition of the alternating product contains a factor of n! or not. The volume form defines an orientation on the symplectic vector space (V, ω).
Suppose that (V, ω) and (W, ρ) are symplectic vector spaces. Then a linear map f : V → W is called a symplectic map if the pullback preserves the symplectic form, i.e. f∗ρ = ω, where the pullback form is defined by (f∗ρ)(u, v) = ρ(f(u), f(v)). Symplectic maps are volume- and orientation-preserving.
If V = W, then a symplectic map is called a linear symplectic transformation of V. In particular, in this case one has that ω(f(u), f(v)) = ω(u, v), and so the linear transformation f preserves the symplectic form. The set of all symplectic transformations forms a group and in particular a Lie group, called the symplectic group and denoted by Sp(V) or sometimes Sp(V, ω). In matrix form symplectic transformations are given by symplectic matrices.
Let W be a linear subspace of V. Define the symplectic complement of W to be the subspace
The symplectic complement satisfies:
However, unlike orthogonal complements, W⊥ ∩ W need not be 0. We distinguish four cases:
Referring to the canonical vector space R2n above,
A Heisenberg group can be defined for any symplectic vector space, and this is the typical way that Heisenberg groups arise.
A vector space can be thought of as a commutative Lie group (under addition), or equivalently as a commutative Lie algebra, meaning with trivial Lie bracket. The Heisenberg group is a central extension of such a commutative Lie group/algebra: the symplectic form defines the commutation, analogously to the canonical commutation relations (CCR), and a Darboux basis corresponds to canonical coordinates – in physics terms, to momentum operators and position operators.
Indeed, by the Stone–von Neumann theorem, every representation satisfying the CCR (every representation of the Heisenberg group) is of this form, or more properly unitarily conjugate to the standard one.
Further, the group algebra of (the dual to) a vector space is the symmetric algebra, and the group algebra of the Heisenberg group (of the dual) is the Weyl algebra: one can think of the central extension as corresponding to quantization or deformation.
Formally, the symmetric algebra of a vector space V over a field F is the group algebra of the dual, Sym(V) := F[V∗], and the Weyl algebra is the group algebra of the (dual) Heisenberg group W(V) = F[H(V∗)]. Since passing to group algebras is a contravariant functor, the central extension map H(V) → V becomes an inclusion Sym(V) → W(V).
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.
In geometry and physics, spinors are elements of a complex number-based vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360°. It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors.
In mathematics and physics, a vector space is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers.
In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.
In mathematics, a symplectic matrix is a matrix with real entries that satisfies the condition
In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of is "outside"
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form
In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.
Let be a partial differential ring with commuting derivatives . The Weyl algebra associated to is the noncommutative ring satisfying the relations for all .
In the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection.
In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory. It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest. For example, the similarity between the Heisenberg equation in the Heisenberg picture of quantum mechanics and the Hamilton equation in classical physics should be built in.
In mathematics, a complex structure on a real vector space is an automorphism of that squares to the minus identity, . Such a structure on allows one to define multiplication by complex scalars in a canonical fashion so as to regard as a complex vector space.
In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.
In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.
In mathematics, a Hamiltonian matrix is a 2n-by-2n matrix A such that JA is symmetric, where J is the skew-symmetric matrix
In linear algebra, skew-Hamiltonian matrices are special matrices which correspond to skew-symmetric bilinear forms on a symplectic vector space.
In mathematics, an invariant convex cone is a closed convex cone in a Lie algebra of a connected Lie group that is invariant under inner automorphisms. The study of such cones was initiated by Ernest Vinberg and Bertram Kostant.