This is a glossary of properties and concepts in category theory in mathematics. (see also Outline of category theory.)
Especially for higher categories, the concepts from algebraic topology are also used in the category theory. For that see also glossary of algebraic topology.
The notations and the conventions used throughout the article are:
The theory of categories originated ... with the need to guide complicated calculations involving passage to the limit in the study of the qualitative leap from spaces to homotopical/homological objects. ... But category theory does not rest content with mere classification in the spirit of Wolffian metaphysics (although a few of its practitioners may do so); rather it is the mutability of mathematically precise structures (by morphisms) which is the essential content of category theory.
For example, if R is a ring, M a right R-module and N a left R-module, then the tensor product of M and N is
where is the category (called the subdivision category of C) whose objects are symbols for all objects c and all morphisms u in C and whose morphisms are and if and where is induced by F so that would go to and would go to . For example, for functors ,
subject to the conditions that (roughly) the compositions are associative and the unit morphisms act as the multiplicative identity.
For example, a category enriched over sets is an ordinary category.[T]he issue of comparing definitions of weak n-category is a slippery one, as it is hard to say what it even means for two such definitions to be equivalent. [...] It is widely held that the structure formed by weak n-categories and the functors, transformations, ... between them should be a weak (n + 1)-category; and if this is the case then the question is whether your weak (n + 1)-category of weak n-categories is equivalent to mine—but whose definition of weak (n + 1)-category are we using here... ?
Yoneda’s Lemma asserts ... in more evocative terms, a mathematical object X is best thought of in the context of a category surrounding it, and is determined by the network of relations it enjoys with all the objects of that category. Moreover, to understand X it might be more germane to deal directly with the functor representing it. This is reminiscent of Wittgenstein’s ’language game’; i.e., that the meaning of a word is—in essence—determined by, in fact is nothing more than, its relations to all the utterances in a language.
where Nat means the set of natural transformations. In particular, the functor