Pseudoalgebra

Last updated

In algebra, given a 2-monad T in a 2-category, a pseudoalgebra for T is a 2-category-version of algebra for T, that satisfies the laws up to coherent isomorphisms.

Contents

See also

Related Research Articles

In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if is a set, "almost all elements of " means "all elements of but those in a negligible subset of ". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite, countable, or null.

Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.

<span class="mw-page-title-main">John C. Baez</span> American mathematician

John Carlos Baez is an American mathematical physicist and a professor of mathematics at the University of California, Riverside (UCR) in Riverside, California. He has worked on spin foams in loop quantum gravity, applications of higher categories to physics, and applied category theory. Additionally, Baez is known on the World Wide Web as the author of the crackpot index.

In category theory, a branch of mathematics, a monad is a monoid in the category of endofunctors of some fixed category. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories. Monads are also useful in the theory of datatypes, the denotational semantics of imperative programming languages, and in functional programming languages, allowing languages with non-mutable states to do things such as simulate for-loops; see Monad.

In functional programming, a monad is a structure that combines program fragments (functions) and wraps their return values in a type with additional computation. In addition to defining a wrapping monadic type, monads define two operators: one to wrap a value in the monad type, and another to compose together functions that output values of the monad type. General-purpose languages use monads to reduce boilerplate code needed for common operations. Functional languages use monads to turn complicated sequences of functions into succinct pipelines that abstract away control flow, and side-effects.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In category theory, a branch of mathematics, Beck's monadicity theorem gives a criterion that characterises monadic functors, introduced by Jonathan Mock Beck (2003) in about 1964. It is often stated in dual form for comonads. It is sometimes called the Beck tripleability theorem because of the older term triple for a monad.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad , one defines an algebra over to be a set together with concrete operations on this set which behave just like the abstract operations of . For instance, there is a Lie operad such that the algebras over are precisely the Lie algebras; in a sense abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations.

In category theory, a monoidal monad is a monad on a monoidal category such that the functor is a lax monoidal functor and the natural transformations and are monoidal natural transformations. In other words, is equipped with coherence maps and satisfying certain properties, and the unit and multiplication are monoidal natural transformations. By monoidality of , the morphisms and are necessarily equal.

<span class="mw-page-title-main">Distributive law between monads</span>

In category theory, an abstract branch of mathematics, distributive laws between monads are a way to express abstractly that two algebraic structures distribute one over the other one.

Undergraduate Texts in Mathematics (UTM) is a series of undergraduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size.

In mathematics, especially (higher) category theory, higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra.

Isbell conjugacy or Isbell duality is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986. That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding.

<span class="mw-page-title-main">Ronald Brown (mathematician)</span>

Ronald Brown FLSW is an English mathematician. Emeritus Professor in the School of Computer Science at Bangor University, he has authored many books and more than 160 journal articles.

In algebraic K-theory, the K-theory of a categoryC (usually equipped with some kind of additional data) is a sequence of abelian groups Ki(C) associated to it. If C is an abelian category, there is no need for extra data, but in general it only makes sense to speak of K-theory after specifying on C a structure of an exact category, or of a Waldhausen category, or of a dg-category, or possibly some other variants. Thus, there are several constructions of those groups, corresponding to various kinds of structures put on C. Traditionally, the K-theory of C is defined to be the result of a suitable construction, but in some contexts there are more conceptual definitions. For instance, the K-theory is a 'universal additive invariant' of dg-categories and small stable ∞-categories.

In mathematics, specifically in homotopy theory and (higher) category theory, coherency is the standard that equalities or diagrams must satisfy when they hold "up to homotopy" or "up to isomorphism".

<span class="mw-page-title-main">Julie Bergner</span> Mathematician

Julia Elizabeth Bergner is a mathematician specializing in algebraic topology, homotopy theory, and higher category theory. She is a professor of mathematics at the University of Virginia.

In mathematics, especially in category theory, the codensity monad is a fundamental construction associating a monad to a wide class of functors.

References