Operad

Last updated

In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad , one defines an algebra over to be a set together with concrete operations on this set which behave just like the abstract operations of . For instance, there is a Lie operad such that the algebras over are precisely the Lie algebras; in a sense abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations.

Contents

History

Operads originate in algebraic topology; they were introduced to characterize iterated loop spaces by J. Michael Boardman and Rainer M. Vogt in 1968 [1] [2] and by J. Peter May in 1972. [3]

Martin Markl, Steve Shnider, and Jim Stasheff write in their book on operads: [4]

"The name operad and the formal definition appear first in the early 1970's in J. Peter May's "The Geometry of Iterated Loop Spaces", but a year or more earlier, Boardman and Vogt described the same concept under the name categories of operators in standard form, inspired by PROPs and PACTs of Adams and Mac Lane. In fact, there is an abundance of prehistory. Weibel [Wei] points out that the concept first arose a century ago in A.N. Whitehead's "A Treatise on Universal Algebra", published in 1898."

The word "operad" was created by May as a portmanteau of "operations" and "monad" (and also because his mother was an opera singer). [5]

Interest in operads was considerably renewed in the early 90s when, based on early insights of Maxim Kontsevich, Victor Ginzburg and Mikhail Kapranov discovered that some duality phenomena in rational homotopy theory could be explained using Koszul duality of operads. [6] [7] Operads have since found many applications, such as in deformation quantization of Poisson manifolds, the Deligne conjecture, [8] or graph homology in the work of Maxim Kontsevich and Thomas Willwacher.

Intuition

Suppose is a set and for we define

,

the set of all functions from the cartesian product of copies of to .

We can compose these functions: given , , the function

is defined as follows: given arguments from , we divide them into blocks, the first one having arguments, the second one arguments, etc., and then apply to the first block, to the second block, etc. We then apply to the list of values obtained from in such a way.

We can also permute arguments, i.e. we have a right action of the symmetric group on , defined by

for , and .

The definition of a symmetric operad given below captures the essential properties of these two operations and .

Definition

Non-symmetric operad

A non-symmetric operad (sometimes called an operad without permutations, or a non- or plain operad) consists of the following:

satisfying the following coherence axioms:

Symmetric operad

A symmetric operad (often just called operad) is a non-symmetric operad as above, together with a right action of the symmetric group on for , denoted by and satisfying

(where on the right hand side refers to the element of that acts on the set by breaking it into blocks, the first of size , the second of size , through the th block of size , and then permutes these blocks by , keeping each block intact)
and given permutations ,
(where denotes the element of that permutes the first of these blocks by , the second by , etc., and keeps their overall order intact).

The permutation actions in this definition are vital to most applications, including the original application to loop spaces.

Morphisms

A morphism of operads consists of a sequence

that:

Operads therefore form a category denoted by .

In other categories

So far operads have only been considered in the category of sets. More generally, it is possible to define operads in any symmetric monoidal category C . In that case, each is an object of C, the composition is a morphism in C (where denotes the tensor product of the monoidal category), and the actions of the symmetric group elements are given by isomorphisms in C.

A common example is the category of topological spaces and continuous maps, with the monoidal product given by the cartesian product. In this case, a topological operad is given by a sequence of spaces (instead of sets) . The structure maps of the operad (the composition and the actions of the symmetric groups) are then assumed to be continuous. The result is called a topological operad. Similarly, in the definition of a morphism of operads, it would be necessary to assume that the maps involved are continuous.

Other common settings to define operads include, for example, modules over a commutative ring, chain complexes, groupoids (or even the category of categories itself), coalgebras, etc.

Algebraist definition

Given a commutative ring R we consider the category of modules over R. An operad over R can be defined as a monoid object in the monoidal category of endofunctors on (it is a monad) satisfying some finiteness condition. [note 1]

For example, a monoid object in the category of "polynomial endofunctors" on is an operad. [8] Similarly, a symmetric operad can be defined as a monoid object in the category of -objects, where means a symmetric group. [9] A monoid object in the category of combinatorial species is an operad in finite sets.

An operad in the above sense is sometimes thought of as a generalized ring. For example, Nikolai Durov defines his generalized rings as monoid objects in the monoidal category of endofunctors on that commute with filtered colimits. [10] This is a generalization of a ring since each ordinary ring R defines a monad that sends a set X to the underlying set of the free R-module generated by X.

Understanding the axioms

Associativity axiom

"Associativity" means that composition of operations is associative (the function is associative), analogous to the axiom in category theory that ; it does not mean that the operations themselves are associative as operations. Compare with the associative operad, below.

Associativity in operad theory means that expressions can be written involving operations without ambiguity from the omitted compositions, just as associativity for operations allows products to be written without ambiguity from the omitted parentheses.

For instance, if is a binary operation, which is written as or . So that may or may not be associative.

Then what is commonly written is unambiguously written operadically as . This sends to (apply on the first two, and the identity on the third), and then the on the left "multiplies" by . This is clearer when depicted as a tree:

OperadTreeCompose1.svg

which yields a 3-ary operation:

OperadTreeCompose2.svg

However, the expression is a priori ambiguous: it could mean , if the inner compositions are performed first, or it could mean , if the outer compositions are performed first (operations are read from right to left). Writing , this is versus . That is, the tree is missing "vertical parentheses":

OperadTreeCompose3.svg

If the top two rows of operations are composed first (puts an upward parenthesis at the line; does the inner composition first), the following results:

OperadTreeCompose4.svg

which then evaluates unambiguously to yield a 4-ary operation. As an annotated expression:

OperadTreeCompose5.svg

If the bottom two rows of operations are composed first (puts a downward parenthesis at the line; does the outer composition first), following results:

OperadTreeCompose6.svg

which then evaluates unambiguously to yield a 4-ary operation:

OperadTreeCompose5.svg

The operad axiom of associativity is that these yield the same result, and thus that the expression is unambiguous.

Identity axiom

The identity axiom (for a binary operation) can be visualized in a tree as:

OperadIdentityAxiom.svg

meaning that the three operations obtained are equal: pre- or post- composing with the identity makes no difference. As for categories, is a corollary of the identity axiom.

Examples

Endomorphism operad in sets and operad algebras

The most basic operads are the ones given in the section on "Intuition", above. For any set , we obtain the endomorphism operad consisting of all functions . These operads are important because they serve to define operad algebras. If is an operad, an operad algebra over is given by a set and an operad morphism . Intuitively, such a morphism turns each "abstract" operation of into a "concrete" -ary operation on the set . An operad algebra over thus consists of a set together with concrete operations on that follow the rules abstractely specified by the operad .

Endomorphism operad in vector spaces and operad algebras

If k is a field, we can consider the category of finite-dimensional vector spaces over k; this becomes a monoidal category using the ordinary tensor product over k. We can then define endomorphism operads in this category, as follows. Let V be a finite-dimensional vector space The endomorphism operad of V consists of [11]

  1. = the space of linear maps ,
  2. (composition) given , , ..., , their composition is given by the map ,
  3. (identity) The identity element in is the identity map ,
  4. (symmetric group action) operates on by permuting the components of the tensors in .

If is an operad, a k-linear operad algebra over is given by a finite-dimensional vector space V over k and an operad morphism ; this amounts to specifying concrete multilinear operations on V that behave like the operations of . (Notice the analogy between operads&operad algebras and rings&modules: a module over a ring R is given by an abelian group M together with a ring homomorphism .)

Depending on applications, variations of the above are possible: for example, in algebraic topology, instead of vector spaces and tensor products between them, one uses (reasonable) topological spaces and cartesian products between them.

"Little something" operads

Operadic composition in the little 2-disks operad, explained in the text. Composition in the little discs operad.svg
Operadic composition in the little 2-disks operad, explained in the text.

The little 2-disks operad is a topological operad where consists of ordered lists of n disjoint disks inside the unit disk of centered at the origin. The symmetric group acts on such configurations by permuting the list of little disks. The operadic composition for little disks is illustrated in the accompanying figure to the right, where an element is composed with an element to yield the element obtained by shrinking the configuration of and inserting it into the i-th disk of , for .

Analogously, one can define the little n-disks operad by considering configurations of disjoint n-balls inside the unit ball of . [12]

Originally the little n-cubes operad or the little intervals operad (initially called little n-cubes PROPs) was defined by Michael Boardman and Rainer Vogt in a similar way, in terms of configurations of disjoint axis-aligned n-dimensional hypercubes (n-dimensional intervals) inside the unit hypercube. [13] Later it was generalized by May [14] to the little convex bodies operad, and "little disks" is a case of "folklore" derived from the "little convex bodies". [15]

Rooted trees

In graph theory, rooted trees form a natural operad. Here, is the set of all rooted trees with n leaves, where the leaves are numbered from 1 to n. The group operates on this set by permuting the leaf labels. Operadic composition is given by replacing the i-th leaf of by the root of the i-th tree , for , thus attaching the n trees to and forming a larger tree, whose root is taken to be the same as the root of and whose leaves are numbered in order.

Swiss-cheese operad

The Swiss-cheese operad. Swiss-cheese-operad.pdf
The Swiss-cheese operad.

The Swiss-cheese operad is a two-colored topological operad defined in terms of configurations of disjoint n-dimensional disks inside a unit n-semidisk and n-dimensional semidisks, centered at the base of the unit semidisk and sitting inside of it. The operadic composition comes from gluing configurations of "little" disks inside the unit disk into the "little" disks in another unit semidisk and configurations of "little" disks and semidisks inside the unit semidisk into the other unit semidisk.

The Swiss-cheese operad was defined by Alexander A. Voronov. [16] It was used by Maxim Kontsevich to formulate a Swiss-cheese version of Deligne's conjecture on Hochschild cohomology. [17] Kontsevich's conjecture was proven partly by Po Hu, Igor Kriz, and Alexander A. Voronov [18] and then fully by Justin Thomas. [19]

Associative operad

Another class of examples of operads are those capturing the structures of algebraic structures, such as associative algebras, commutative algebras and Lie algebras. Each of these can be exhibited as a finitely presented operad, in each of these three generated by binary operations.

For example, the associative operad is a symmetric operad generated by a binary operation , subject only to the condition that

This condition corresponds to associativity of the binary operation ; writing multiplicatively, the above condition is . This associativity of the operation should not be confused with associativity of composition which holds in any operad; see the axiom of associativity, above.

In the associative operad, each is given by the symmetric group , on which acts by right multiplication. The composite permutes its inputs in blocks according to , and within blocks according to the appropriate .

The algebras over the associative operad are precisely the semigroups: sets together with a single binary associative operation. The k-linear algebras over the associative operad are precisely the associative k-algebras.

Terminal symmetric operad

The terminal symmetric operad is the operad which has a single n-ary operation for each n, with each acting trivially. The algebras over this operad are the commutative semigroups; the k-linear algebras are the commutative associative k-algebras.

Operads from the braid groups

Similarly, there is a non- operad for which each is given by the Artin braid group . Moreover, this non- operad has the structure of a braided operad, which generalizes the notion of an operad from symmetric to braid groups.

Linear algebra

In linear algebra, real vector spaces can be considered to be algebras over the operad of all linear combinations [ citation needed ]. This operad is defined by for , with the obvious action of permuting components, and composition given by the concatentation of the vectors , where . The vector for instance represents the operation of forming a linear combination with coefficients 2,3,-5,0,...

This point of view formalizes the notion that linear combinations are the most general sort of operation on a vector space – saying that a vector space is an algebra over the operad of linear combinations is precisely the statement that all possible algebraic operations in a vector space are linear combinations. The basic operations of vector addition and scalar multiplication are a generating set for the operad of all linear combinations, while the linear combinations operad canonically encodes all possible operations on a vector space.

Similarly, affine combinations, conical combinations, and convex combinations can be considered to correspond to the sub-operads where the terms of the vector sum to 1, the terms are all non-negative, or both, respectively. Graphically, these are the infinite affine hyperplane, the infinite hyper-octant, and the infinite simplex. This formalizes what is meant by being or the standard simplex being model spaces, and such observations as that every bounded convex polytope is the image of a simplex. Here suboperads correspond to more restricted operations and thus more general theories.

Commutative-ring operad and Lie operad

The commutative-ring operad is an operad whose algebras are the commutative rings. It is defined by , with the obvious action of and operadic composition given by substituting polynomials (with renumbered variables) for variables. A similar operad can be defined whose algebras are the associative, commutative algebras over some fixed base field. The Koszul-dual of this operad is the Lie operad (whose algebras are the Lie algebras), and vice versa.

Free Operads

Typical algebraic constructions (e.g., free algebra construction) can be extended to operads. Let denote the category whose objects are sets on which the group acts. Then there is a forgetful functor , which simply forgets the operadic composition. It is possible to construct a left adjoint to this forgetful functor (this is the usual definition of free functor). Given a collection of operations E, is the free operad on E.

Like a group or a ring, the free construction allows to express an operad in terms of generators and relations. By a free representation of an operad , we mean writing as a quotient of a free operad where E describes generators of and the kernel of the epimorphism describes the relations.

A (symmetric) operad is called quadratic if it has a free presentation such that is the generator and the relation is contained in . [20]

Clones

Clones are the special case of operads that are also closed under identifying arguments together ("reusing" some data). Clones can be equivalently defined as operads that are also a minion (or clonoid).

Operads in homotopy theory

In Stasheff (2004), Stasheff writes:

Operads are particularly important and useful in categories with a good notion of "homotopy", where they play a key role in organizing hierarchies of higher homotopies.

See also

Notes

  1. ”finiteness" refers to the fact that only a finite number of inputs are allowed in the definition of an operad. For example, the condition is satisfied if one can write
    ,
    .

Citations

  1. Boardman, J. M.; Vogt, R. M. (1 November 1968). "Homotopy-everything $H$-spaces". Bulletin of the American Mathematical Society. 74 (6): 1117–1123. doi: 10.1090/S0002-9904-1968-12070-1 . ISSN   0002-9904.
  2. Boardman, J. M.; Vogt, R. M. (1973). Homotopy Invariant Algebraic Structures on Topological Spaces. Lecture Notes in Mathematics. Vol. 347. doi:10.1007/bfb0068547. ISBN   978-3-540-06479-4. ISSN   0075-8434.
  3. May, J. P. (1972). The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics. Vol. 271. CiteSeerX   10.1.1.146.3172 . doi:10.1007/bfb0067491. ISBN   978-3-540-05904-2. ISSN   0075-8434.
  4. "Operads in Algebra, Topology and Physics": Martin Markl, Steve Shnider, Jim Stasheff, Mathematical Surveys and Monographs, Volume: 96; 2002
  5. May, J. Peter. "Operads, Algebras, and Modules" (PDF). math.uchicago.edu. p. 2. Retrieved 28 September 2018.
  6. Ginzburg, Victor; Kapranov, Mikhail (1994). "Koszul duality for operads". Duke Mathematical Journal. 76 (1): 203–272. doi:10.1215/S0012-7094-94-07608-4. ISSN   0012-7094. MR   1301191. S2CID   115166937. Zbl   0855.18006 via Project Euclid.
  7. Loday, Jean-Louis (1996). "La renaissance des opérades". www.numdam.org. Séminaire Nicolas Bourbaki. MR   1423619. Zbl   0866.18007 . Retrieved 27 September 2018.
  8. 1 2 Kontsevich, Maxim; Soibelman, Yan (26 January 2000). "Deformations of algebras over operads and Deligne's conjecture". arXiv: math/0001151 .
  9. Jones, J. D. S.; Getzler, Ezra (8 March 1994). "Operads, homotopy algebra and iterated integrals for double loop spaces". arXiv: hep-th/9403055 .
  10. N. Durov, New approach to Arakelov geometry, University of Bonn, PhD thesis, 2007; arXiv:0704.2030.
  11. Markl, Martin (2006). "Operads and PROPs". Handbook of Algebra. 5 (1): 87–140. arXiv: math/0601129 . doi:10.1016/S1570-7954(07)05002-4. ISBN   9780444531018. S2CID   3239126. Example 2
  12. Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily (2005) Geometric and Algebraic Topological Methods in Quantum Mechanics, ISBN   981-256-129-3, pp. 474,475
  13. Greenlees, J. P. C. (2002). Axiomatic, Enriched and Motivic Homotopy Theory. Proceedings of the NATO Advanced Study Institute on Axiomatic, Enriched and Motivic Homotopy Theory. Cambridge, United Kingdom: Springer Science & Business Media. pp. 154–156. ISBN   978-1-4020-1834-3.
  14. May, J. P. (1977). "Infinite loop space theory". Bull. Amer. Math. Soc. 83 (4): 456–494. doi: 10.1090/s0002-9904-1977-14318-8 .
  15. Stasheff, Jim (1998). "Grafting Boardman's Cherry Trees to Quantum Field Theory". arXiv: math/9803156 .
  16. Voronov, Alexander A. (1999). The Swiss-cheese operad. Contemporary Mathematics. Baltimore, Maryland, United States: AMS. pp. 365–373. ISBN   978-0-8218-7829-3.
  17. Kontsevich, Maxim (1999). "Operads and Motives in Deformation Quantization". Lett. Math. Phys. 48: 35–72. arXiv: math/9904055 . Bibcode:1999math......4055K. doi:10.1023/A:1007555725247. S2CID   16838440.
  18. Hu, Po; Kriz, Igor; Voronov, Alexander A. (2006). "On Kontsevich's Hochschild cohomology conjecture". Compositio Mathematica. 142 (1): 143–168. arXiv: math/0309369 . doi: 10.1112/S0010437X05001521 .
  19. Thomas, Justin (2016). "Kontsevich's Swiss cheese conjecture". Geom. Topol. 20 (1): 1–48. arXiv: 1011.1635 . doi:10.2140/gt.2016.20.1. S2CID   119320246.
  20. Markl, Martin (2006). "Operads and PROPs". Handbook of Algebra. 5: 87–140. doi:10.1016/S1570-7954(07)05002-4. ISBN   9780444531018. S2CID   3239126. Definition 37

Related Research Articles

In mathematics, a product is the result of multiplication, or an expression that identifies objects to be multiplied, called factors. For example, 21 is the product of 3 and 7, and is the product of and . When one factor is an integer, the product is called a multiple.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In category theory, a branch of mathematics, a monad is a triple consisting of a functor T from a category to itself and two natural transformations that satisfy the conditions like associativity. For example, if are functors adjoint to each other, then together with determined by the adjoint relation is a monad.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.

In mathematics, a super vector space is a -graded vector space, that is, a vector space over a field with a given decomposition of subspaces of grade and grade . The study of super vector spaces and their generalizations is sometimes called super linear algebra. These objects find their principal application in theoretical physics where they are used to describe the various algebraic aspects of supersymmetry.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors

In category theory, a branch of mathematics, a PROP is a symmetric strict monoidal category whose objects are the natural numbers n identified with the finite sets and whose tensor product is given on objects by the addition on numbers. Because of “symmetric”, for each n, the symmetric group on n letters is given as a subgroup of the automorphism group of n. The name PROP is an abbreviation of "PROduct and Permutation category".

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

In mathematics, a diffiety is a geometrical object which plays the same role in the modern theory of partial differential equations that algebraic varieties play for algebraic equations, that is, to encode the space of solutions in a more conceptual way. The term was coined in 1984 by Alexandre Mikhailovich Vinogradov as portmanteau from differential variety.

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

In algebraic geometry, a derived scheme is a homotopy-theoretic generalization of a scheme in which classical commutative rings are replaced with derived versions such as differential graded algebras, commutative simplicial rings, or commutative ring spectra.

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

In mathematics, an algebra such as has multiplication whose associativity is well-defined on the nose. This means for any real numbers we have

References