In algebra, an operad algebra is an "algebra" over an operad. It is a generalization of an associative algebra over a commutative ring R, with an operad replacing R.
Given an operad O (say, a symmetric sequence in a symmetric monoidal ∞-category C), an algebra over an operad, or O-algebra for short, is, roughly, a left module over O with multiplications parametrized by O.
If O is a topological operad, then one can say an algebra over an operad is an O-monoid object in C. If C is symmetric monoidal, this recovers the usual definition.
Let C be symmetric monoidal ∞-category with monoidal structure distributive over colimits. If is a map of operads and, moreover, if f is a homotopy equivalence, then the ∞-category of algebras over O in C is equivalent to the ∞-category of algebras over O' in C. [1]
In mathematics, a monoidal category is a category equipped with a bifunctor
In mathematics, especially in category theory, a closed monoidal category is a category that is both a monoidal category and a closed category in such a way that the structures are compatible.
In mathematics, a multicategory is a generalization of the concept of category that allows morphisms of multiple arity. If morphisms in a category are viewed as analogous to functions, then morphisms in a multicategory are analogous to functions of several variables. Multicategories are also sometimes called operads, or colored operads.
This is a glossary of properties and concepts in category theory in mathematics.
In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad , one defines an algebra over to be a set together with concrete operations on this set which behave just like the abstract operations of . For instance, there is a Lie operad such that the algebras over are precisely the Lie algebras; in a sense abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations.
In category theory, a branch of mathematics, a PROP is a symmetric strict monoidal category whose objects are the natural numbers n identified with the finite sets and whose tensor product is given on objects by the addition on numbers. Because of “symmetric”, for each n, the symmetric group on n letters is given as a subgroup of the automorphism group of n. The name PROP is an abbreviation of "PROduct and Permutation category".
In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.
In mathematics, especially homological algebra, a differential graded category, often shortened to dg-category or DG category, is a category whose morphism sets are endowed with the additional structure of a differential graded -module.
In algebra, given a ring R, the category of left modules over R is the category whose objects are all left modules over R and whose morphisms are all module homomorphisms between left R-modules. For example, when R is the ring of integers Z, it is the same thing as the category of abelian groups. The category of right modules is defined in a similar way.
In category theory, a branch of mathematics, the center is a variant of the notion of the center of a monoid, group, or ring to a category.
In the theory of operads in algebra and algebraic topology, an A∞-operad is a parameter space for a multiplication map that is homotopy coherently associative.
Isbell conjugacy is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986. That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding. Also, Lawvere says that; "Then the conjugacies are the first step toward expressing the duality between space and quantity fundamental to mathematics".
In mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory.
Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.
In algebra, Quillen's Q-construction associates to an exact category an algebraic K-theory. More precisely, given an exact category C, the construction creates a topological space so that is the Grothendieck group of C and, when C is the category of finitely generated projective modules over a ring R, for , is the i-th K-group of R in the classical sense. One puts
In mathematics, Koszul duality, named after the French mathematician Jean-Louis Koszul, is any of various kinds of dualities found in representation theory of Lie algebras, abstract algebras and topology. The prototype example is the BGG correspondence, due to Joseph Bernstein, Israel Gelfand, and Sergei Gelfand,. It is a duality between the derived category of a symmetric algebra and that of an exterior algebra. The importance of the notion rests on the suspicion that Koszul duality seems quite ubiquitous in nature.
In mathematics, an -algebra in a symmetric monoidal infinity category C consists of the following data:
This is a glossary of properties and concepts in algebraic topology in mathematics.
In mathematics, the Lie operad is an operad whose algebras are Lie algebras. The notion was introduced by Ginzburg & Kapranov (1994) in their formulation of Koszul duality.
In algebraic topology, an -object is a sequence of objects such that each comes with an action of the symmetric group .