Subquotient

Last updated

In the mathematical fields of category theory and abstract algebra, a subquotient is a quotient object of a subobject. Subquotients are particularly important in abelian categories, and in group theory, where they are also known as sections, though this conflicts with a different meaning in category theory.

Contents

So in the algebraic structure of groups, is a subquotient of if there exists a subgroup of and a normal subgroup of so that is isomorphic to .

In the literature about sporadic groups wordings like “ is involved in [1] can be found with the apparent meaning of “ is a subquotient of “.

As in the context of subgroups, in the context of subquotients the term trivial may be used for the two subquotients and which are present in every group .[ citation needed ]

A quotient of a subrepresentation of a representation (of, say, a group) might be called a subquotient representation; e.g., Harish-Chandra's subquotient theorem. [2]

Example

There are subquotients of groups which are neither subgroup nor quotient of it. E.g. according to article Sporadic group, Fi22 has a double cover which is a subgroup of Fi23, so it is a subquotient of Fi23 without being a subgroup or quotient of it.

Order relation

The relation subquotient of is an order relation – which shall be denoted by . It shall be proved for groups.

Notation
For group , subgroup of and normal subgroup of the quotient group is a subquotient of , i.e. .
  1. Reflexivity: , i.e. every element is related to itself. Indeed, is isomorphic to the subquotient of .
  2. Antisymmetry: if and then , i.e. no two distinct elements precede each other. Indeed, a comparison of the group orders of and then yields from which .
  3. Transitivity: if and then .

Proof of transitivity for groups

Let be subquotient of , furthermore be subquotient of and be the canonical homomorphism. Then all vertical () maps

 

are surjective for the respective pairs

The preimages and are both subgroups of containing and it is and because every has a preimage with Moreover, the subgroup is normal in

As a consequence, the subquotient of is a subquotient of in the form

Relation to cardinal order

In constructive set theory, where the law of excluded middle does not necessarily hold, one can consider the relation subquotient of as replacing the usual order relation(s) on cardinals. When one has the law of the excluded middle, then a subquotient of is either the empty set or there is an onto function . This order relation is traditionally denoted If additionally the axiom of choice holds, then has a one-to-one function to and this order relation is the usual on corresponding cardinals.

See also

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

<span class="mw-page-title-main">Quotient group</span> Group obtained by aggregating similar elements of a larger group

A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure. For example, the cyclic group of addition modulo n can be obtained from the group of integers under addition by identifying elements that differ by a multiple of and defining a group structure that operates on each such class as a single entity. It is part of the mathematical field known as group theory.

In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.

<span class="mw-page-title-main">Lie group</span> Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.

<span class="mw-page-title-main">Normal subgroup</span> Subgroup invariant under conjugation

In abstract algebra, a normal subgroup is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and . The usual notation for this relation is .

In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups.

In algebra, the kernel of a homomorphism is generally the inverse image of 0. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.

In mathematics, specifically abstract algebra, the isomorphism theorems are theorems that describe the relationship among quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.

<span class="mw-page-title-main">Semidirect product</span> Operation in group theory

In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol . There are two closely related concepts of semidirect product:

In abstract algebra an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the conjugating element. They can be realized via operations from within the group itself, hence the adjective "inner". These inner automorphisms form a subgroup of the automorphism group, and the quotient of the automorphism group by this subgroup is defined as the outer automorphism group.

<span class="mw-page-title-main">Solvable group</span> Group with subnormal series where all factors are abelian

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group. More specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G. Explicitly,

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

<span class="mw-page-title-main">Fiber bundle</span> Continuous surjection satisfying a local triviality condition

In mathematics, and particularly topology, a fiber bundle is a space that is locally a product space, but globally may have a different topological structure. Specifically, the similarity between a space and a product space is defined using a continuous surjective map, that in small regions of behaves just like a projection from corresponding regions of to The map called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space is known as the total space of the fiber bundle, as the base space, and the fiber.

<span class="mw-page-title-main">Free product</span> Operation that combines groups

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group GH. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from GH to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group.

In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.

In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : GH is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the spin groups, pin groups, and metaplectic groups.

<span class="mw-page-title-main">Classical group</span> Type of group in mathematics

In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.

The concept of size homotopy group is analogous in size theory of the classical concept of homotopy group. In order to give its definition, let us assume that a size pair is given, where is a closed manifold of class and is a continuous function. Consider the lexicographical order on defined by setting if and only if . For every set .

<span class="mw-page-title-main">Complexification (Lie group)</span> Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

References

  1. Griess, Robert L. (1982), "The Friendly Giant", Inventiones Mathematicae, 69: 1−102, Bibcode:1982InMat..69....1G, doi:10.1007/BF01389186, hdl: 2027.42/46608 , S2CID   123597150
  2. Dixmier, Jacques (1996) [1974], Enveloping algebras, Graduate Studies in Mathematics, vol. 11, Providence, R.I.: American Mathematical Society, ISBN   978-0-8218-0560-2, MR   0498740 p. 310