Elementary Theory of the Category of Sets

Last updated

In mathematics, the Elementary Theory of the Category of Sets or ETCS is a set of axioms for set theory proposed by William Lawvere in 1964. [1] Although it was originally stated in the language of category theory, as Leinster pointed out, the axioms can be stated without references to category theory.

Contents

ETCS is a basic example of structural set theory, an approach to set theory that emphasizes sets as abstract structures.

Axioms

The real message is this: simply by writing down a few mundane, uncontroversial statements about sets and functions, we arrive at an axiomatization that reflects how sets are used in everyday mathematics.

Tom Leinster, [2]

Informally, the axioms are as follows: (here, set, function and composition of functions are primitives) [3]

  1. Composition of functions is associative and has identities.
  2. There is a set with exactly one element.
  3. There is an empty set.
  4. A function is determined by its effect on elements.
  5. A Cartesian product exists for a pair of sets.
  6. Given sets and , there is a set of all functions from to .
  7. Given and an element , the pre-image is defined.
  8. The subsets of a set correspond to the functions .
  9. The natural numbers form a set.
  10. (weak axiom of choice) Every surjection has a right inverse (i.e., a section).

The resulting theory is weaker than ZFC. If the axiom schema of replacement is added as another axiom, the resulting theory is equivalent to ZFC. [4]

Related Research Articles

<span class="mw-page-title-main">Axiom of choice</span> Axiom of set theory

In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. The axiom of choice is equivalent to the statement that every partition has a transversal.

<span class="mw-page-title-main">Category theory</span> General theory of mathematical structures

Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.

In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF.

<span class="mw-page-title-main">Equality (mathematics)</span> Basic notion of sameness in mathematics

In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. Equality between A and B is written A = B, and pronounced "A equals B". In this equality, A and B are distinguished by calling them left-hand side (LHS), and right-hand side (RHS). Two objects that are not equal are said to be distinct.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In mathematics, a constant function is a function whose (output) value is the same for every input value.

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

In mathematics, differential Galois theory is the field that studies extensions of differential fields.

<span class="mw-page-title-main">Natural numbers object</span>

In category theory, a natural numbers object (NNO) is an object endowed with a recursive structure similar to natural numbers. More precisely, in a category E with a terminal object 1, an NNO N is given by:

  1. a global element z : 1 → N, and
  2. an arrow s : NN,

In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica.

In mathematics, a Grothendieck universe is a set U with the following properties:

  1. If x is an element of U and if y is an element of x, then y is also an element of U. (U is a transitive set.)
  2. If x and y are both elements of U, then is an element of U.
  3. If x is an element of U, then P(x), the power set of x, is also an element of U.
  4. If is a family of elements of U, and if I is an element of U, then the union is an element of U.
<span class="mw-page-title-main">Uniformization (set theory)</span>

In set theory, a branch of mathematics, the axiom of uniformization is a weak form of the axiom of choice. It states that if is a subset of , where and are Polish spaces, then there is a subset of that is a partial function from to , and whose domain equals

In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that, with respect to any given property, resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory.

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

Categorical set theory is any one of several versions of set theory developed from or treated in the context of mathematical category theory.

This is a glossary of terms and definitions related to the topic of set theory.

<span class="mw-page-title-main">Tom Leinster</span> Mathematician

Thomas "Tom" Stephen Hampden Leinster is a British mathematician, known for his work on category theory.

References

  1. William Lawvere, An elementary theory of the category of sets , Proceedings of the National Academy of Science of the U.S.A 52 pp.1506-1511 (1964).
  2. Leinster 2014, The end of the paper.
  3. Leinster 2014 , Figure 1.
  4. Leinster 2014, p. 412.

Further reading