Glossary of algebraic topology

Last updated

This is a glossary of properties and concepts in algebraic topology in mathematics.

Contents

See also: glossary of topology, list of algebraic topology topics, glossary of category theory, glossary of differential geometry and topology, Timeline of manifolds.

!$@

*
The base point of a based space.
For an unbased space X, X+ is the based space obtained by adjoining a disjoint base point.

A

absolute neighborhood retract
abstract
1.  Abstract homotopy theory
Adams
1.   John Frank Adams.
2.  The Adams spectral sequence.
3.  The Adams conjecture.
4.  The Adams e-invariant.
5.  The Adams operations.
Alexander duality
Alexander duality
Alexander trick
The Alexander trick produces a section of the restriction map , Top denoting a homeomorphism group; namely, the section is given by sending a homeomorphism to the homeomorphism
.
This section is in fact a homotopy inverse. [1]
Analysis Situs
approximate fibration
1.  An approximate fibration, a generalization of a fibration and a projection in a locally trivial bundle.
2.  A manifold approximate fibration is a proper approximate fibration between manifolds.
aspherical space
Aspherical space
assembly map
Atiyah
1.   Michael Atiyah.
2.   Atiyah duality.
3.  The Atiyah–Hirzebruch spectral sequence.

B

bar construction
based space
A pair (X, x0) consisting of a space X and a point x0 in X.
Betti number
Bing–Borsuk conjecture
See Bing–Borsuk conjecture.
Bockstein homomorphism
Borel
Borel conjecture.
Borel–Moore homology
Borsuk's theorem
Bott
1.   Raoul Bott.
2.  The Bott periodicity theorem for unitary groups say: .
3.  The Bott periodicity theorem for orthogonal groups say: .
Brouwer fixed-point theorem
The Brouwer fixed-point theorem says that any map has a fixed point.

C

cap product
Casson
Casson invariant.
Čech cohomology
cellular
1.  A map ƒ:XY between CW complexes is cellular if for all n.
2.  The cellular approximation theorem says that every map between CW complexes is homotopic to a cellular map between them.
3.  The cellular homology is the (canonical) homology of a CW complex. Note it applies to CW complexes and not to spaces in general. A cellular homology is highly computable; it is especially useful for spaces with natural cell decompositions like projective spaces or Grassmannian.
chain homotopy
Given chain maps between chain complexes of modules, a chain homotopy s from f to g is a sequence of module homomorphisms satisfying . It is also called a homotopy operator.
chain map
A chain map between chain complexes of modules is a sequence of module homomorphisms that commutes with the differentials; i.e., .
chain homotopy equivalence
A chain map that is an isomorphism up to chain homotopy; that is, if ƒ:CD is a chain map, then it is a chain homotopy equivalence if there is a chain map g:DC such that gƒ and ƒg are chain homotopic to the identity homomorphisms on C and D, respectively.
change of fiber
The change of fiber of a fibration p is a homotopy equivalence, up to homotopy, between the fibers of p induced by a path in the base.
character variety
The character variety [2] of a group π and an algebraic group G (e.g., a reductive complex Lie group) is the geometric invariant theory quotient by G:
.
characteristic class
Let Vect(X) be the set of isomorphism classes of vector bundles on X. We can view as a contravariant functor from Top to Set by sending a map ƒ:XY to the pullback ƒ* along it. Then a characteristic class is a natural transformation from Vect to the cohomology functor H*. Explicitly, to each vector bundle E we assign a cohomology class, say, c(E). The assignment is natural in the sense that ƒ*c(E) = c(ƒ*E).
chromatic homotopy theory
chromatic homotopy theory.
class
1.   Chern class.
2.   Stiefel–Whitney class.
classifying space
Loosely speaking, a classifying space is a space representing some contravariant functor defined on the category of spaces; for example, is the classifying space in the sense is the functor that sends a space to the set of isomorphism classes of real vector bundles on the space.
clutching
cobar spectral sequence
cobordism
1.  See cobordism.
2.  A cobordism ring is a ring whose elements are cobordism classes.
3.  See also h-cobordism theorem, s-cobordism theorem.
coefficient ring
If E is a ring spectrum, then the coefficient ring of it is the ring .
cofiber sequence
A cofiber sequence is any sequence that is equivalent to the sequence for some ƒ where is the reduced mapping cone of ƒ (called the cofiber of ƒ).
cofibrant approximation
cofibration
A map is a cofibration if it satisfies the property: given and homotopy such that , there is a homotopy such that . [3] A cofibration is injective and is a homeomorphism onto its image.
coherent homotopy
coherency
See coherency (homotopy theory)
cohomotopy group
For a based space X, the set of homotopy classes is called the n-th cohomotopy group of X.
cohomology operation
collapse
An informal phrase but usually means taking a quotient; e.g., a cone is obtained by collapsing the top (or bottom) of a cylinder.
completion
complex bordism
complex-oriented
A multiplicative cohomology theory E is complex-oriented if the restriction map E2(CP) → E2(CP1) is surjective.
concordant
cone
The cone over a space X is . The reduced cone is obtained from the reduced cylinder by collapsing the top.
connective
A spectrum E is connective if for all negative integers q.
configuration space
constant
A constant sheaf on a space X is a sheaf on X such that for some set A and some map , the natural map is bijective for any x in X.
continuous
Continuous cohomology.
contractible space
A space is contractible if the identity map on the space is homotopic to the constant map.
covering
1.  A map p: YX is a covering or a covering map if each point of x has a neighborhood N that is evenly covered by p; this means that the pre-image of N is a disjoint union of open sets, each of which maps to N homeomorphically.
2.  It is n-sheeted if each fiber p−1(x) has exactly n elements.
3.  It is universal if Y is simply connected.
4.  A morphism of a covering is a map over X. In particular, an automorphism of a covering p:YX (also called a deck transformation) is a map YY over X that has inverse; i.e., a homeomorphism over X.
5.  A G-covering is a covering arising from a group action on a space X by a group G, the covering map being the quotient map from X to the orbit space X/G. The notion is used to state the universal property: if X admits a universal covering (in particular connected), then
is the set of isomorphism classes of G-coverings.
In particular, if G is abelian, then the left-hand side is (cf. nonabelian cohomology.)
cup product
CW complex
A CW complex is a space X equipped with a CW structure; i.e., a filtration
such that (1) X0 is discrete and (2) Xn is obtained from Xn-1 by attaching n-cells.
cyclic homology

D

deck transformation
Another term for an automorphism of a covering.
deformation retract
A subspace is called a deformation retract of X if there is a homotopy such that is the identity, and is the identity (i.e., is a retract of in the sense in category theory). It is called a strong deformation retract if, in addition, satisfies the requirement that is the identity. For example, a homotopy exhibits that the origin is a strong deformation retract of an open ball B centered at the origin.
Deligne–Beilinson cohomology
Deligne–Beilinson cohomology
delooping
degeneracy cycle
degree
Dold
The Dold–Thom theorem.

E

Eckmann–Hilton argument
The Eckmann–Hilton argument.
Eckmann–Hilton duality
Eilenberg–MacLane spaces
Given an abelian group π, the Eilenberg–MacLane spaces are characterized by
.
Eilenberg–Steenrod axioms
The Eilenberg–Steenrod axioms are the set of axioms that any cohomology theory (singular, cellular, etc.) must satisfy. Weakening the axioms (namely dropping the dimension axiom) leads to a generalized cohomology theory.
Eilenberg–Zilber theorem
elliptic
elliptic cohomology.
En-algebra
equivariant algebraic topology
Equivariant algebraic topoloy is the study of spaces with (continuous) group action.
etale
étale homotopy.
exact
A sequence of pointed sets is exact if the image of f coincides with the pre-image of the chosen point of Z.
excision
The excision axiom for homology says: if and , then for each q,
is an isomorphism.
excisive pair/triad

F

factorization homology
fiber-homotopy equivalence
Given DB, EB, a map ƒ:DE over B is a fiber-homotopy equivalence if it is invertible up to homotopy over B. The basic fact is that if DB, EB are fibrations, then a homotopy equivalence from D to E is a fiber-homotopy equivalence.
fiber sequence
The fiber sequence of a map is the sequence where is the homotopy fiber of f; i.e., the pullback of the path space fibration along f.
fiber square
fiber square
fibration
A map p:EB is a fibration if for any given homotopy and a map such that , there exists a homotopy such that . (The above property is called the homotopy lifting property.) A covering map is a basic example of a fibration.
fibration sequence
One says is a fibration sequence to mean that p is a fibration and that F is homotopy equivalent to the homotopy fiber of p, with some understanding of base points.
finitely dominated
fundamental class
fundamental group
The fundamental group of a space X with base point x0 is the group of homotopy classes of loops at x0. It is precisely the first homotopy group of (X, x0) and is thus denoted by .
fundamental groupoid
The fundamental groupoid of a space X is the category whose objects are the points of X and whose morphisms xy are the homotopy classes of paths from x to y; thus, the set of all morphisms from an object x0 to itself is, by definition, the fundament group .
framed
A framed manifold is a manifold with a framing.
free
Synonymous with unbased. For example, the free path space of a space X refers to the space of all maps from I to X; i.e., while the path space of a based space X consists of such map that preserve the base point (i.e., 0 goes to the base point of X).
Freudenthal suspension theorem
For a nondegenerately based space X, the Freudenthal suspension theorem says: if X is (n-1)-connected, then the suspension homomorphism
is bijective for q < 2n - 1 and is surjective if q = 2n - 1.
Fulton–MacPherson compactification
The Fulton–MacPherson compactification of the configuration space of n distinct labeled points in a compact complex manifold is a natural smooth compactification introduced by Fulton and MacPherson.

G

G-fibration
A G-fibration with some topological monoid G. An example is Moore's path space fibration.
G-space
A G-space is a space together with an action of a group G (usually satisfying some conditions).
Γ-space
generalized cohomology theory
A generalized cohomology theory is a contravariant functor from the category of pairs of spaces to the category of abelian groups that satisfies all of the Eilenberg–Steenrod axioms except the dimension axiom.
geometrization conjecture
geometrization conjecture
genus
germ
germ
group completion
grouplike
An H-space X is said to be group-like or grouplike if is a group; i.e., X satisfies the group axioms up to homotopy.
Gysin sequence

H

Hauptvermutung
1.   Hauptvermutung , a German for main conjecture, is short for die Hauptvermutung der kombinatorischen Topologie (the main conjecture of combinatorial topology). It asks whether two simplicial complexes are isomorphic if homeomorphic. It was disproved by Milnor in 1961.
2.  There are some variants; for example, one can ask whether two PL manifolds are PL-isomorphic if homeomorphic (which is also false).
h-cobordism
h-cobordism.
Hilton–Milnor theorem
The Hilton–Milnor theorem.
Hirzebruch
Hirzebruch signature theorem.
H-space
An H-space is a based space that is a unital magma up to homotopy.
homologus
Two cycles are homologus if they belong to the same homology class.
homology sphere
A homology sphere is a manifold having the homology type of a sphere.
homotopy category
Let C be a subcategory of the category of all spaces. Then the homotopy category of C is the category whose class of objects is the same as the class of objects of C but the set of morphisms from an object x to an object y is the set of the homotopy classes of morphisms from x to y in C. For example, a map is a homotopy equivalence if and only if it is an isomorphism in the homotopy category.
homotopy colimit
A homotopy colimit is a homotopically-correct version of colimit.
homotopy over a space B
A homotopy ht such that for each fixed t, ht is a map over B.
homotopy equivalence
1.  A map ƒ:XY is a homotopy equivalence if it is invertible up to homotopy; that is, there exists a map g: YX such that g ∘ ƒ is homotopic to th identity map on X and ƒ ∘ g is homotopic to the identity map on Y.
2.  Two spaces are said to be homotopy equivalent if there is a homotopy equivalence between the two. For example, by definition, a space is contractible if it is homotopy equivalent to a point space.
homotopy excision theorem
The homotopy excision theorem is a substitute for the failure of excision for homotopy groups.
homotopy fiber
The homotopy fiber of a based map ƒ:XY, denoted by Fƒ, is the pullback of along f.
homotopy fiber product
A fiber product is a particular kind of a limit. Replacing this limit lim with a homotopy limit holim yields a homotopy fiber product.
homotopy group
1.  For a based space X, let , the set of homotopy classes of based maps. Then is the set of path-connected components of X, is the fundamental group of X and are the (higher) n-th homotopy groups of X.
2.  For based spaces , the relative homotopy group is defined as of the space of paths that all start at the base point of X and end somewhere in A. Equivalently, it is the of the homotopy fiber of .
3.  If E is a spectrum, then
4.  If X is a based space, then the stable k-th homotopy group of X is . In other words, it is the k-th homotopy group of the suspension spectrum of X.
homotopy pullback
A homotopy pullback is a special case of a homotopy limit that is a homotopically-correct pullback.
homotopy quotient
If G is a Lie group acting on a manifold X, then the quotient space is called the homotopy quotient (or Borel construction) of X by G, where EG is the universal bundle of G.
homotopy spectral sequence
homotopy sphere
A homotopy sphere is a manifold having the homotopy type of a sphere.
Hopf
1.   Heinz Hopf.
2.   Hopf invariant.
3.  The Hopf index theorem.
4.   Hopf construction.
Hurewicz
The Hurewicz theorem establishes a relationship between homotopy groups and homology groups.

I

infinite loop space
infinite loop space machine
Infinite loop space machine.
infinite mapping telescope
intersection
intersection pairing.
intersection homology, a substitute for an ordinary (singular) homology for a singular space.
intersection cohomology
integration along the fiber
See integration along the fiber.
invariance of domain
invariance of domain.
isotopy

J

J-homomorphism
See J-homomorphism.
join
The join of based spaces X, Y is

K

k-invariant
Kan complex
See Kan complex.
Kirby–Siebenmann
Kirby–Siebenmann classification.
Kervaire invariant
The Kervaire invariant.
Koszul duality
Koszul duality.
Kuiper
Kuiper's theorem says that the general linear group of an infinite-dimensional Hilbert space is contractible.
Künneth formula

L

Lazard ring
The Lazard ring L is the (huge) commutative ring together with the formal group law ƒ that is universal among all the formal group laws in the sense that any formal group law g over a commutative ring R is obtained via a ring homomorphism LR mapping ƒ to g. According to Quillen's theorem, it is also the coefficient ring of the complex bordism MU. The Spec of L is called the moduli space of formal group laws.
Lefschetz
1.   Solomon Lefschetz
2.  The Lefschetz fixed-point theorem says: given a finite simplicial complex K and its geometric realization X, if a map has no fixed point, then the Lefschetz number of f; that is,
is zero. For example, it implies the Brouwer fixed-point theorem since the Lefschetz number of is, as higher homologies vanish, one.
3.  The Lefschetz hyperplane theorem.
lens space
The lens space is the quotient space where is the group of p-th roots of unity acting on the unit sphere by .
Leray spectral sequence
L2
The L2-cohomology of a Riemannian or Kähler manifold is the cohomology of the complexes of differential forms with square-integrable coefficients (coefficients for forms not cohomology).
local coefficient
1.  A module over the group ring for some based space B; in other words, an abelian group together with a homomorphism .
2.  The local coefficient system over a based space B with an abelian group A is a fiber bundle over B with discrete fiber A. If B admits a universal covering , then this meaning coincides with that of 1. in the sense: every local coefficient system over B can be given as the associated bundle .
local invariant
Local invariant cycle theorem.
local sphere
The localization of a sphere at some prime number
local system
local system.
localization
locally constant sheaf
A locally constant sheaf on a space X is a sheaf such that each point of X has an open neighborhood on which the sheaf is constant.
loop space
The loop space of a based space X is the space of all loops starting and ending at the base point of X.

M

Madsen–Weiss theorem
mapping
1.  
The mapping cone of a map f:X-Y is obtained by gluing the cone over X to Y. Mapping cone.PNG
The mapping cone of a map ƒ:XY is obtained by gluing the cone over X to Y.
The mapping cone (or cofiber) of a map ƒ:XY is .
2.  The mapping cylinder of a map ƒ:XY is . Note: .
3.  The reduced versions of the above are obtained by using reduced cone and reduced cylinder.
4.  The mapping path space Pp of a map p:EB is the pullback of along p. If p is fibration, then the natural map EPp is a fiber-homotopy equivalence; thus, one can replace E by the mapping path space without changing the homotopy type of the fiber. A mapping path space is also called a mapping cocylinder.
5.  As a set, the mapping space from a space X to a space Y is the set of all continuous maps from X to Y. It is topologized in such a way the mapping space is a space; tha is, an object in the category of spaces used in algebraic topology; e.g., the category of compactly generated weak Hausdorff spaces. This topology may or may not be compact-open topology.
Mayer–Vietoris sequence
microbundle
microbundle
model category
A presentation of an ∞-category. [4] See also model category.
Moore
1.  Moore space
2.   Moore path space.
multiplicative
A generalized cohomology theory E is multiplicative if E*(X) is a graded ring. For example, the ordinary cohomology theory and the complex K-theory are multiplicative (in fact, cohomology theories defined by E-rings are multiplicative.)

N

n-cell
Another term for an n-disk.
n-connected
A based space X is n-connected if for all integers qn. For example, "1-connected" is the same thing as "simply connected".
n-equivalent
NDR-pair
A pair of spaces is said to be an NDR-pair (=neighborhood deformation retract pair) if there is a map and a homotopy such that , , and .
If A is a closed subspace of X, then the pair is an NDR-pair if and only if is a cofibration.
nilpotent
1.   nilpotent space; for example, a simply connected space is nilpotent.
2.  The nilpotent theorem.
nonabelian
1.   nonabelian cohomology
2.   nonabelian algebraic topology
normalized
Given a simplicial group G, the normalized chain complexNG of G is given by with the n-th differential given by ; intuitively, one throws out degenerate chains. [5] It is also called the Moore complex.

O

obstruction cocycle
obstruction theory
Obstruction theory is the collection of constructions and calculations indicating when some map on a submanifold (subcomplex) can or cannot be extended to the full manifold. These typically involve the Postnikov tower, killing homotopy groups, obstruction cocycles, etc.
of finite type
A CW complex is of finite type if there are only finitely many cells in each dimension.
operad
The portmanteau of “operations” and “monad”. See operad.
orbibundle
orbibundle.
orbit category
orientation
1.  The orientation covering (or orientation double cover) of a manifold is a two-sheeted covering so that each fiber over x corresponds to two different ways of orienting a neighborhood of x.
2.  An orientation of a manifold is a section of an orientation covering; i.e., a consistent choice of a point in each fiber.
3.  An orientation character (also called the first Stiefel–Whitney class) is a group homomorphism that corresponds to an orientation covering of a manifold X (cf. #covering.)
4.  See also orientation of a vector bundle as well as orientation sheaf.

P

pair
1.  A pair of spaces is a space X together with a subspace .
2.  A map of pairs is a map such that .
p-adic homotopy theory
The p-adic homotopy theory.
parallelizable
path class
An equivalence class of paths (two paths are equivalent if they are homotopic to each other).
path lifting
A path lifting function for a map p: EB is a section of where is the mapping path space of p. For example, a covering is a fibration with a unique path lifting function. By formal consideration, a map is a fibration if and only if there is a path lifting function for it.
path space
The path space of a based space X is , the space of based maps, where the base point of I is 0. Put in another way, it is the (set-theoretic) fiber of over the base point of X. The projection is called the path space fibration, whose fiber over the base point of X is the loop space . See also mapping path space.
perverse
A perverse sheaf.
phantom map
phantom map
piecewise algebraic space
piecewise algebraic space, the notion introduced by Kontsevich and Soibelman.
PL
1.  PL short for piecewise linear.
2.  A PL manifold is a topological manifold with a maximal PL atlas where a PL atlas is an atlas in which the transition maps are PL.
3.  A PL space is a space with a locally finite simplicial triangulation.
Poincaré
1.   Henri Poincaré.
2.  The Poincaré duality theorem says: given a manifold M of dimension n and an abelian group A, there is a natural isomorphism
.
3.   Poincaré conjecture
4.   Poincaré lemma states the higher de Rham cohomology of a contractible smooth manifold vanishes.
5.   Poincaré homology sphere.
Pontrjagin–Thom construction
Postnikov system
A Postnikov system is a sequence of fibrations, such that all preceding manifolds have vanishing homotopy groups below a given dimension.
principal fibration
Usually synonymous with G-fibration.
prime decomposition
profinite
profinite homotopy theory; it studies profinite spaces.
properly discontinuous
Not particularly a precise term. But it could mean, for example, that G is discrete and each point of the G-space has a neighborhood V such that for each g in G that is not the identity element, gV intersects V at finitely many points.
pseudomanifold
pseudomanifold
pullback
Given a map p:EB, the pullback of p along ƒ:XB is the space (succinctly it is the equalizer of p and f). It is a space over X through a projection.
Puppe sequence
The Puppe sequence refers ro either of the sequences
where are homotopy cofiber and homotopy fiber of f.
pushout
Given and a map , the pushout of X and B along f is
;
that is X and B are glued together along A through f. The map f is usually called the attaching map.
An important example is when B = Dn, A = Sn-1; in that case, forming such a pushout is called attaching an n-cell (meaning an n-disk) to X.

Q

quasi-fibration
A quasi-fibration is a map such that the fibers are homotopy equivalent to each other.
Quillen
1.   Daniel Quillen
2.  Quillen’s theorem says that is the Lazard ring.

R

rational
1.  The rational homotopy theory.
2.  The rationalization of a space X is, roughly, the localization of X at zero. More precisely, X0 together with j: XX0 is a rationalization of X if the map induced by j is an isomorphism of vector spaces and .
3.  The rational homotopy type of X is the weak homotopy type of X0.
regulator
1.   Borel regulator.
2.   Beilinson regulator.
Reidemeister
Reidemeister torsion.
reduced
The reduced suspension of a based space X is the smash product . It is related to the loop functor by where is the loop space.
retract
1.  A retract of a map f is a map r such that is the identity (in other words, f is a section of r).
2.  A subspace is called a retract if the inclusion map admits a retract (see #deformation retract).
ring spectrum
A ring spectrum is a spectrum satisfying the ring axioms, either on nose or up to homotopy. For example, a complex K-theory is a ring spectrum.
Rokhlin
Rokhlin invariant.

S

Samelson product
Serre
1.   Jean-Pierre Serre.
2.   Serre class.
3.   Serre spectral sequence.
simple
simple-homotopy equivalence
A map ƒ:XY between finite simplicial complexes (e.g., manifolds) is a simple-homotopy equivalence if it is homotopic to a composition of finitely many elementary expansions and elementary collapses. A homotopy equivalence is a simple-homotopy equivalence if and only if its Whitehead torsion vanishes.
simplicial approximation
See simplicial approximation theorem.
simplicial complex
See simplicial complex; the basic example is a triangulation of a manifold.
simplicial homology
A simplicial homology is the (canonical) homology of a simplicial complex. Note it applies to simplicial complexes and not to spaces; cf. #singular homology.
signature invariant
singular
1.  Given a space X and an abelian group π, the singular homology group of X with coefficients in π is
where is the singular chain complex of X; i.e., the n-th degree piece is the free abelian group generated by all the maps from the standard n-simplex to X. A singular homology is a special case of a simplicial homology; indeed, for each space X, there is the singular simplicial complex of X [6] whose homology is the singular homology of X.
2.  The singular simplices functor is the functor from the category of all spaces to the category of simplicial sets, that is the right adjoint to the geometric realization functor.
3.  The singular simplicial complex of a space X is the normalized chain complex of the singular simplex of X.
slant product
small object argument
smash product
The smash product of based spaces X, Y is . It is characterized by the adjoint relation
.
Spanier–Whitehead
The Spanier–Whitehead duality.
spectrum
Roughly a sequence of spaces together with the maps (called the structure maps) between the consecutive terms; see spectrum (topology).
sphere bundle
A sphere bundle is a fiber bundle whose fibers are spheres.
sphere spectrum
The sphere spectrum is a spectrum consisting of a sequence of spheres together with the maps between the spheres given by suspensions. In short, it is the suspension spectrum of .
stable homotopy group
See #homotopy group.
Steenrod homology
Steenrod homology.
Steenrod operation
Sullivan
1.   Dennis Sullivan.
2.  The Sullivan conjecture.
3.  Sullivan, Dennis (1977), "Infinitesimal computations in topology", Publications Mathématiques de l'IHÉS, 47: 269–331, doi:10.1007/BF02684341, S2CID   42019745 - introduces rational homotopy theory (along with Quillen's paper).
4.  The Sullivan algebra in the rational homotopy theory.
suspension spectrum
The suspension spectrum of a based space X is the spectrum given by .
stratified
1.  A stratified space is a topological space with a stratification.
2.  A stratified Morse theory is a Morse theory done on a stratified space.
symmetric spectrum
See symmetric spectrum.
symplectic topology
symplectic topology.

T

telescope
Thom
1.   René Thom.
2.  If E is a vector bundle on a paracompact space X, then the Thom space of E is obtained by first replacing each fiber by its compactification and then collapsing the base X.
3.  The Thom isomorphism says: for each orientable vector bundle E of rank n on a manifold X, a choice of an orientation (the Thom class of E) induces an isomorphism
.
4.   Thom's first and second isotopy lemmas. [7]
5.  A Thom mapping originally called a mapping "sans éclatement"
topological chiral homology
transfer
transgression
triangulation
triangulation.

U

universal coefficient
The universal coefficient theorem.
up to homotopy
A statement holds in the homotopy category as opposed to the category of spaces.

V

V-manifold
An old term for an orbifold.
van Kampen
The van Kampen theorem says: if a space X is path-connected and if x0 is a point in X, then
where the colimit runs over some open cover of X consisting of path-connected open subsets containing x0 such that the cover is closed under finite intersections.
Verdier
Verdier duality.

W

Waldhausen S-construction
Waldhausen S-construction.
Wall's finiteness obstruction
weak equivalence
A map ƒ:XY of based spaces is a weak equivalence if for each q, the induced map is bijective.
wedge
For based spaces X, Y, the wedge product of X and Y is the coproduct of X and Y; concretely, it is obtained by taking their disjoint union and then identifying the respective base points.
well pointed
A based space is well pointed (or non-degenerately based) if the inclusion of the base point is a cofibration.
Whitehead
1.   J. H. C. Whitehead.
2.   Whitehead's theorem says that for CW complexes, the homotopy equivalence is the same thing as the weak equivalence.
3.   Whitehead group.
4.   Whitehead product.
winding number
1.   winding number.

Notes

  1. Let r, s denote the restriction and the section. For each f in , define . Then .
  2. Despite the name, it may not be an algebraic variety in the strict sense; for example, it may not be irreducible. Also, without some finiteness assumption on G, it is only a scheme.
  3. Hatcher, Ch. 4. H.
  4. How to think about model categories?
  5. "Moore complex in nLab".
  6. "Singular simplicial complex in nLab".
  7. "Differential topology - Thom's first isotopy lemma".

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

<span class="mw-page-title-main">Algebraic topology</span> Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

<span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics.

A CW complex is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation. The C stands for "closure-finite", and the W for "weak" topology.

In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle . As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

<span class="mw-page-title-main">Triangulation (topology)</span>

In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.

In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by John Milnor. Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.

In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan and Daniel Quillen. This simplification of homotopy theory makes certain calculations much easier.

In mathematics, especially in algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a topological space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.

In mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X, a normal map on X endows the space, roughly speaking, with some of the homotopy-theoretic global structure of a closed manifold. In particular, X has a good candidate for a stable normal bundle and a Thom collapse map, which is equivalent to there being a map from a manifold M to X matching the fundamental classes and preserving normal bundle information. If the dimension of X is 5 there is then only the algebraic topology surgery obstruction due to C. T. C. Wall to X actually being homotopy equivalent to a closed manifold. Normal maps also apply to the study of the uniqueness of manifold structures within a homotopy type, which was pioneered by Sergei Novikov.

In mathematics, an n-group, or n-dimensional higher group, is a special kind of n-category that generalises the concept of group to higher-dimensional algebra. Here, may be any natural number or infinity. The thesis of Alexander Grothendieck's student Hoàng Xuân Sính was an in-depth study of 2-groups under the moniker 'gr-category'.

In algebraic topology, the Dold-Thom theorem states that the homotopy groups of the infinite symmetric product of a connected CW complex are the same as its reduced homology groups. The most common version of its proof consists of showing that the composition of the homotopy group functors with the infinite symmetric product defines a reduced homology theory. One of the main tools used in doing so are quasifibrations. The theorem has been generalised in various ways, for example by the Almgren isomorphism theorem.

In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category.

In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site taking values in simplicial sets. Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.

In category theory, a branch of mathematics, a (left) Bousfield localization of a model category replaces the model structure with another model structure with the same cofibrations but with more weak equivalences.

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is learned as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories).

References

Further reading