In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. [1] The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace.
An absolute neighborhood retract (ANR) is a particularly well-behaved type of topological space. For example, every topological manifold is an ANR. Every ANR has the homotopy type of a very simple topological space, a CW complex.
Let X be a topological space and A a subspace of X. Then a continuous map
is a retraction if the restriction of r to A is the identity map on A; that is, for all a in A. Equivalently, denoting by
the inclusion, a retraction is a continuous map r such that
that is, the composition of r with the inclusion is the identity of A. Note that, by definition, a retraction maps X onto A. A subspace A is called a retract of X if such a retraction exists. For instance, any non-empty space retracts to a point in the obvious way (the constant map yields a retraction). If X is Hausdorff, then A must be a closed subset of X.
If is a retraction, then the composition ι∘r is an idempotent continuous map from X to X. Conversely, given any idempotent continuous map we obtain a retraction onto the image of s by restricting the codomain.
A continuous map
is a deformation retraction of a space X onto a subspace A if, for every x in X and a in A,
In other words, a deformation retraction is a homotopy between a retraction and the identity map on X. The subspace A is called a deformation retract of X. A deformation retraction is a special case of a homotopy equivalence.
A retract need not be a deformation retract. For instance, having a single point as a deformation retract of a space X would imply that X is path connected (and in fact that X is contractible).
Note: An equivalent definition of deformation retraction is the following. A continuous map is a deformation retraction if it is a retraction and its composition with the inclusion is homotopic to the identity map on X. In this formulation, a deformation retraction carries with it a homotopy between the identity map on X and itself.
If, in the definition of a deformation retraction, we add the requirement that
for all t in [0, 1] and a in A, then F is called a strong deformation retraction. In other words, a strong deformation retraction leaves points in A fixed throughout the homotopy. (Some authors, such as Hatcher, take this as the definition of deformation retraction.)
As an example, the n-sphere is a strong deformation retract of as strong deformation retraction one can choose the map
Note that the condition of being a strong deformation retract is strictly stronger than being a deformation retract. For instance, let X be the subspace of consisting of closed line segments connecting the origin and the point for n a positive integer, together with the closed line segment connecting the origin with . Let X have the subspace topology inherited from the Euclidean topology on . Now let A be the subspace of X consisting of the line segment connecting the origin with . Then A is a deformation retract of X but not a strong deformation retract of X. [2]
A map f: A → X of topological spaces is a (Hurewicz) cofibration if it has the homotopy extension property for maps to any space. This is one of the central concepts of homotopy theory. A cofibration f is always injective, in fact a homeomorphism to its image. [3] If X is Hausdorff (or a compactly generated weak Hausdorff space), then the image of a cofibration f is closed in X.
Among all closed inclusions, cofibrations can be characterized as follows. The inclusion of a closed subspace A in a space X is a cofibration if and only if A is a neighborhood deformation retract of X, meaning that there is a continuous map with and a homotopy such that for all for all and and if . [4]
For example, the inclusion of a subcomplex in a CW complex is a cofibration.
The boundary of the n-dimensional ball, that is, the (n−1)-sphere, is not a retract of the ball. (See Brouwer fixed-point theorem § A proof using homology or cohomology.)
A closed subset of a topological space is called a neighborhood retract of if is a retract of some open subset of that contains .
Let be a class of topological spaces, closed under homeomorphisms and passage to closed subsets. Following Borsuk (starting in 1931), a space is called an absolute retract for the class , written if is in and whenever is a closed subset of a space in , is a retract of . A space is an absolute neighborhood retract for the class , written if is in and whenever is a closed subset of a space in , is a neighborhood retract of .
Various classes such as normal spaces have been considered in this definition, but the class of metrizable spaces has been found to give the most satisfactory theory. For that reason, the notations AR and ANR by themselves are used in this article to mean and . [6]
A metrizable space is an AR if and only if it is contractible and an ANR. [7] By Dugundji, every locally convex metrizable topological vector space is an AR; more generally, every nonempty convex subset of such a vector space is an AR. [8] For example, any normed vector space (complete or not) is an AR. More concretely, Euclidean space the unit cube and the Hilbert cube are ARs.
ANRs form a remarkable class of "well-behaved" topological spaces. Among their properties are:
In mathematics and more specifically in topology, a homeomorphism, also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable.
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product.
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.
This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.
In topology, a topological space is called simply connected if it is path-connected and every path between two points can be continuously transformed into any other such path while preserving the two endpoints in question. Intuitively, this corresponds to a space that has no disjoint parts and no holes that go completely through it, because two paths going around different sides of such a hole cannot be continuously transformed into each other. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial.
In topology, a topological space is called a compactly generated space or k-space if its topology is determined by compact spaces in a manner made precise below. There is in fact no commonly agreed upon definition for such spaces, as different authors use variations of the definition that are not exactly equivalent to each other. Also some authors include some separation axiom in the definition of one or both terms, and others don't.
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.
In mathematics, specifically algebraic topology, the mapping cylinder of a continuous function between topological spaces and is the quotient
In mathematics, in particular homotopy theory, a continuous mapping between topological spaces
In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki.
In mathematics, a topological space X is contractible if the identity map on X is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within that space.
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.
This is a glossary of properties and concepts in algebraic topology in mathematics.
In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.