Homotopy extension property

Last updated

In mathematics, in the area of algebraic topology, the homotopy extension property indicates which homotopies defined on a subspace can be extended to a homotopy defined on a larger space. The homotopy extension property of cofibrations is dual to the homotopy lifting property that is used to define fibrations.

Contents

Definition

Let be a topological space, and let . We say that the pair has the homotopy extension property if, given a homotopy and a map such that

then there exists an extension of to a homotopy such that . [1]

That is, the pair has the homotopy extension property if any map can be extended to a map (i.e. and agree on their common domain).

If the pair has this property only for a certain codomain , we say that has the homotopy extension property with respect to .

Visualisation

The homotopy extension property is depicted in the following diagram

Homotopy extension property rotated.svg

If the above diagram (without the dashed map) commutes (this is equivalent to the conditions above), then pair (X,A) has the homotopy extension property if there exists a map which makes the diagram commute. By currying, note that homotopies expressed as maps are in natural bijection with expressions as maps .

Note that this diagram is dual to (opposite to) that of the homotopy lifting property; this duality is loosely referred to as Eckmann–Hilton duality.

Properties

Other

If has the homotopy extension property, then the simple inclusion map is a cofibration.

In fact, if you consider any cofibration , then we have that is homeomorphic to its image under . This implies that any cofibration can be treated as an inclusion map, and therefore it can be treated as having the homotopy extension property.

See also

Related Research Articles

<span class="mw-page-title-main">Commutative diagram</span> Collection of maps which give the same result

In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the same result. It is said that commutative diagrams play the role in category theory that equations play in algebra.

A covering of a topological space is a continuous map with special properties.

The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics.

<span class="mw-page-title-main">Inclusion map</span>

In mathematics, if is a subset of then the inclusion map is the function that sends each element of to treated as an element of

In mathematics, in particular in homotopy theory within algebraic topology, the homotopy lifting property is a technical condition on a continuous function from a topological space E to another one, B. It is designed to support the picture of E "above" B by allowing a homotopy taking place in B to be moved "upstairs" to E.

In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p + q. This defines an associative graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace.

In mathematics, specifically algebraic topology, the mapping cylinder of a continuous function between topological spaces and is the quotient

In mathematics, in particular homotopy theory, a continuous mapping

<span class="mw-page-title-main">Mapping cone (topology)</span>

In mathematics, especially homotopy theory, the mapping cone is a construction of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated . Its dual, a fibration, is called the mapping fibre. The mapping cone can be understood to be a mapping cylinder , with one end of the cylinder collapsed to a point. Thus, mapping cones are frequently applied in the homotopy theory of pointed spaces.

In the branch of mathematics called homological algebra, a t-structure is a way to axiomatize the properties of an abelian subcategory of a derived category. A t-structure on consists of two subcategories of a triangulated category or stable infinity category which abstract the idea of complexes whose cohomology vanishes in positive, respectively negative, degrees. There can be many distinct t-structures on the same category, and the interplay between these structures has implications for algebra and geometry. The notion of a t-structure arose in the work of Beilinson, Bernstein, Deligne, and Gabber on perverse sheaves.

In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace.

In mathematics, the interior product is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product. The interior product is sometimes written as

In mathematics, the Adams spectral sequence is a spectral sequence introduced by J. Frank Adams (1958) which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre.

In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan.

In mathematics, more specifically algebraic topology, a pair is shorthand for an inclusion of topological spaces . Sometimes is assumed to be a cofibration. A morphism from to is given by two maps and such that .

In the mathematical disciplines of algebraic topology and homotopy theory, Eckmann–Hilton duality in its most basic form, consists of taking a given diagram for a particular concept and reversing the direction of all arrows, much as in category theory with the idea of the opposite category. A significantly deeper form argues that the fact that the dual notion of a limit is a colimit allows us to change the Eilenberg–Steenrod axioms for homology to give axioms for cohomology. It is named after Beno Eckmann and Peter Hilton.

In mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of limit and colimit extended to the homotopy category . The main idea is this: if we have a diagram

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories).

References

  1. A. Dold, Lectures on Algebraic Topology, pp. 84, Springer ISBN   3-540-58660-1