Homeomorphism group

Last updated

In mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. They are important to the theory of topological spaces, generally exemplary of automorphism groups and topologically invariant in the group isomorphism sense.

Contents

Properties and examples

There is a natural group action of the homeomorphism group of a space on that space. Let be a topological space and denote the homeomorphism group of by . The action is defined as follows:

This is a group action since for all ,

where denotes the group action, and the identity element of (which is the identity function on ) sends points to themselves. If this action is transitive, then the space is said to be homogeneous.

Topology

As with other sets of maps between topological spaces, the homeomorphism group can be given a topology, such as the compact-open topology. In the case of regular, locally compact spaces the group multiplication is then continuous.

If the space is compact and Hausdorff, the inversion is continuous as well and becomes a topological group. If is Hausdorff, locally compact and locally connected this holds as well. [1] tSome locally compact separable metric spaces exhibit an inversion map that is not continuous, resulting in not forming a topological group. [1]

Mapping class group

In geometric topology especially, one considers the quotient group obtained by quotienting out by isotopy, called the mapping class group:

The MCG can also be interpreted as the 0th homotopy group, . This yields the short exact sequence:

In some applications, particularly surfaces, the homeomorphism group is studied via this short exact sequence, and by first studying the mapping class group and group of isotopically trivial homeomorphisms, and then (at times) the extension.

See also

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

<span class="mw-page-title-main">Homeomorphism</span> Mapping which preserves all topological properties of a given space

In mathematics and more specifically in topology, a homeomorphism, also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

In the mathematical field of topology, a uniform space is a set with additional structure that is used to define uniform properties, such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups, but the concept is designed to formulate the weakest axioms needed for most proofs in analysis.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

<span class="mw-page-title-main">Covering space</span> Type of continuous map in topology

In topology, a covering or covering projection is a map between topological spaces that, intuitively, locally acts like a projection of multiple copies of a space onto itself. In particular, coverings are special types of local homeomorphisms. If is a covering, is said to be a covering space or cover of , and is said to be the base of the covering, or simply the base. By abuse of terminology, and may sometimes be called covering spaces as well. Since coverings are local homeomorphisms, a covering space is a special kind of étale space.

<span class="mw-page-title-main">Fiber bundle</span> Continuous surjection satisfying a local triviality condition

In mathematics, and particularly topology, a fiber bundle is a space that is locally a product space, but globally may have a different topological structure. Specifically, the similarity between a space and a product space is defined using a continuous surjective map, that in small regions of behaves just like a projection from corresponding regions of to The map called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space is known as the total space of the fiber bundle, as the base space, and the fiber.

In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with

  1. An action of on , analogous to for a product space.
  2. A projection onto . For a product space, this is just the projection onto the first factor, .
<span class="mw-page-title-main">Foliation</span> In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

In mathematics, particularly in algebraic topology, Alexander–Spanier cohomology is a cohomology theory for topological spaces.

In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space.

In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold. Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, especially functional analysis, a Fréchet algebra, named after Maurice René Fréchet, is an associative algebra over the real or complex numbers that at the same time is also a Fréchet space. The multiplication operation for is required to be jointly continuous. If is an increasing family of seminorms for the topology of , the joint continuity of multiplication is equivalent to there being a constant and integer for each such that for all . Fréchet algebras are also called B0-algebras.

In algebraic topology, an area of mathematics, a homeotopy group of a topological space is a homotopy group of the group of self-homeomorphisms of that space.

In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct § Topological equivalence of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that for a topologically conjugate function follows trivially.

In size theory, the natural pseudodistance between two size pairs , is the value , where varies in the set of all homeomorphisms from the manifold to the manifold and is the supremum norm. If and are not homeomorphic, then the natural pseudodistance is defined to be . It is usually assumed that , are closed manifolds and the measuring functions are . Put another way, the natural pseudodistance measures the infimum of the change of the measuring function induced by the homeomorphisms from to .

Size functions are shape descriptors, in a geometrical/topological sense. They are functions from the half-plane to the natural numbers, counting certain connected components of a topological space. They are used in pattern recognition and topology.

In geometry, if X is a manifold with an action of a topological group G by analytical diffeomorphisms, the notion of a (G, X)-structure on a topological space is a way to formalise it being locally isomorphic to X with its G-invariant structure; spaces with a (G, X)-structure are always manifolds and are called (G, X)-manifolds. This notion is often used with G being a Lie group and X a homogeneous space for G. Foundational examples are hyperbolic manifolds and affine manifolds.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

In mathematics, the (right) Ziegler spectrum of a ring R is a topological space whose points are indecomposable pure-injective right R-modules. Its closed subsets correspond to theories of modules closed under arbitrary products and direct summands. Ziegler spectra are named after Martin Ziegler, who first defined and studied them in 1984.

References

  1. 1 2 Dijkstra, Jan J. (2005), "On homeomorphism groups and the compact-open topology" (PDF), American Mathematical Monthly, 112 (10): 910–912, doi:10.2307/30037630, MR   2186833