Alexander duality

Last updated

In mathematics, Alexander duality refers to a duality theory initiated by a result of J. W. Alexander in 1915, and subsequently further developed, particularly by Pavel Alexandrov and Lev Pontryagin. It applies to the homology theory properties of the complement of a subspace X in Euclidean space, a sphere, or other manifold. It is generalized by Spanier–Whitehead duality.

Contents

General statement for spheres

Let be a compact, locally contractible subspace of the sphere of dimension n. Let be the complement of in . Then if stands for reduced homology or reduced cohomology, with coefficients in a given abelian group, there is an isomorphism

for all . Note that we can drop local contractibility as part of the hypothesis if we use Čech cohomology, which is designed to deal with local pathologies.

Applications

This is useful for computing the cohomology of knot and link complements in . Recall that a knot is an embedding and a link is a disjoint union of knots, such as the Borromean rings. Then, if we write the link/knot as , we have

,

giving a method for computing the cohomology groups. Then, it is possible to differentiate between different links using the Massey products. [1] For example, for the Borromean rings , the homology groups are

Combinatorial Alexander duality

Let be an abstract simplicial complex on a vertex set of size . The Alexander dual of is defined as the simplicial complex on whose faces are complements of non-faces of . That is

.

Note that .

Alexander duality implies the following combinatorial analog (for reduced homology and cohomology, with coefficients in any given abelian group):

for all . Indeed, this can be deduced by letting be the -skeleton of the full simplex on (that is, is the family of all subsets of size at most ) and showing that the geometric realization is homotopy equivalent to . Björner and Tancer presented an elementary combinatorial proof and summarized a few generalizations. [2]

Alexander duality for constructible sheaves

For smooth manifolds, Alexander duality is a formal consequence of Verdier duality for sheaves of abelian groups. More precisely, if we let denote a smooth manifold and we let be a closed subspace (such as a subspace representing a cycle, or a submanifold) represented by the inclusion , and if is a field, then if is a sheaf of -vector spaces we have the following isomorphism [3] :307

,

where the cohomology group on the left is compactly supported cohomology. We can unpack this statement further to get a better understanding of what it means. First, if is the constant sheaf and is a smooth submanifold, then we get

,

where the cohomology group on the right is local cohomology with support in . Through further reductions, it is possible to identify the homology of with the cohomology of . This is useful in algebraic geometry for computing the cohomology groups of projective varieties, and is exploited for constructing a basis of the Hodge structure of hypersurfaces of degree using the Jacobian ring.

Alexander's 1915 result

Referring to Alexander's original work, it is assumed that X is a simplicial complex.

Alexander had little of the modern apparatus, and his result was only for the Betti numbers, with coefficients taken modulo 2. What to expect comes from examples. For example the Clifford torus construction in the 3-sphere shows that the complement of a solid torus is another solid torus; which will be open if the other is closed, but this does not affect its homology. Each of the solid tori is from the homotopy point of view a circle. If we just write down the Betti numbers

1, 1, 0, 0

of the circle (up to , since we are in the 3-sphere), then reverse as

0, 0, 1, 1

and then shift one to the left to get

0, 1, 1, 0

there is a difficulty, since we are not getting what we started with. On the other hand the same procedure applied to the reduced Betti numbers, for which the initial Betti number is decremented by 1, starts with

0, 1, 0, 0

and gives

0, 0, 1, 0

whence

0, 1, 0, 0.

This does work out, predicting the complement's reduced Betti numbers.

The prototype here is the Jordan curve theorem, which topologically concerns the complement of a circle in the Riemann sphere. It also tells the same story. We have the honest Betti numbers

1, 1, 0

of the circle, and therefore

0, 1, 1

by flipping over and

1, 1, 0

by shifting to the left. This gives back something different from what the Jordan theorem states, which is that there are two components, each contractible (Schoenflies theorem, to be accurate about what is used here). That is, the correct answer in honest Betti numbers is

2, 0, 0.

Once more, it is the reduced Betti numbers that work out. With those, we begin with

0, 1, 0

to finish with

1, 0, 0.

From these two examples, therefore, Alexander's formulation can be inferred: reduced Betti numbers are related in complements by

.

Related Research Articles

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In algebraic geometry, a branch of mathematics, Serre duality is a duality for the coherent sheaf cohomology of algebraic varieties, proved by Jean-Pierre Serre. The basic version applies to vector bundles on a smooth projective variety, but Alexander Grothendieck found wide generalizations, for example to singular varieties. On an n-dimensional variety, the theorem says that a cohomology group is the dual space of another one, . Serre duality is the analog for coherent sheaf cohomology of Poincaré duality in topology, with the canonical line bundle replacing the orientation sheaf.

In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces, known as their homology and cohomology groups. The result is due to two Austrian mathematicians, Walther Mayer and Leopold Vietoris. The method consists of splitting a space into subspaces, for which the homology or cohomology groups may be easier to compute. The sequence relates the (co)homology groups of the space to the (co)homology groups of the subspaces. It is a natural long exact sequence, whose entries are the (co)homology groups of the whole space, the direct sum of the (co)homology groups of the subspaces, and the (co)homology groups of the intersection of the subspaces.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n-dimensional oriented closed manifold (compact and without boundary), then the kth cohomology group of M is isomorphic to the (nk)th homology group of M, for all integers k

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years.

In mathematics, especially in homological algebra and algebraic topology, a Künneth theorem, also called a Künneth formula, is a statement relating the homology of two objects to the homology of their product. The classical statement of the Künneth theorem relates the singular homology of two topological spaces X and Y and their product space . In the simplest possible case the relationship is that of a tensor product, but for applications it is very often necessary to apply certain tools of homological algebra to express the answer.

In algebraic topology, universal coefficient theorems establish relationships between homology groups (or cohomology groups) with different coefficients. For instance, for every topological space X, its integral homology groups:

In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace.

<span class="mw-page-title-main">Grothendieck–Riemann–Roch theorem</span>

In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.

In algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by Hartshorne (1967), and in 1961-2 at IHES written up as SGA2 - Grothendieck (1968), republished as Grothendieck (2005). Given a function defined on an open subset of an algebraic variety, local cohomology measures the obstruction to extending that function to a larger domain. The rational function , for example, is defined only on the complement of on the affine line over a field , and cannot be extended to a function on the entire space. The local cohomology module detects this in the nonvanishing of a cohomology class . In a similar manner, is defined away from the and axes in the affine plane, but cannot be extended to either the complement of the -axis or the complement of the -axis alone ; this obstruction corresponds precisely to a nonzero class in the local cohomology module .

In mathematics, a local system on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943.

In topology, Borel−Moore homology or homology with closed support is a homology theory for locally compact spaces, introduced by Armand Borel and John Moore in 1960.

In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan and Daniel Quillen. This simplification of homotopy theory makes certain calculations much easier.

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties.

References

  1. Massey, William S. (1998-05-01). "Higher order linking numbers" (PDF). Journal of Knot Theory and Its Ramifications . 7 (3): 393–414. doi:10.1142/S0218216598000206. ISSN   0218-2165. Archived from the original on 2 Feb 2021.
  2. Björner, Anders; Tancer, Martin (December 2009). "Note: Combinatorial Alexander Duality—A Short and Elementary Proof". Discrete & Computational Geometry. 42 (4): 586–593. arXiv: 0710.1172 . doi:10.1007/s00454-008-9102-x.
  3. Iversen, Birger (1986). Cohomology of sheaves. Berlin: Springer-Verlag. doi:10.1007/978-3-642-82783-9. ISBN   0-387-16389-1. OCLC   13269489.

Further reading