Puppe sequence

Last updated

In mathematics, the Puppe sequence is a construction of homotopy theory, so named after Dieter Puppe. It comes in two forms: a long exact sequence, built from the mapping fibre (a fibration), and a long coexact sequence, built from the mapping cone (which is a cofibration). [1] Intuitively, the Puppe sequence allows us to think of homology theory as a functor that takes spaces to long-exact sequences of groups. It is also useful as a tool to build long exact sequences of relative homotopy groups.

Contents

Exact Puppe sequence

Let be a continuous map between pointed spaces and let denote the mapping fibre (the fibration dual to the mapping cone). One then obtains an exact sequence:

where the mapping fibre is defined as: [1]

Observe that the loop space injects into the mapping fibre: , as it consists of those maps that both start and end at the basepoint . One may then show that the above sequence extends to the longer sequence

The construction can then be iterated to obtain the exact Puppe sequence

The exact sequence is often more convenient than the coexact sequence in practical applications, as Joseph J. Rotman explains: [1]

(the) various constructions (of the coexact sequence) involve quotient spaces instead of subspaces, and so all maps and homotopies require more scrutiny to ensure that they are well-defined and continuous.

Examples

Example: Relative homotopy

As a special case, [1] one may take X to be a subspace A of Y that contains the basepoint y0, and f to be the inclusion of A into Y. One then obtains an exact sequence in the category of pointed spaces:

where the are the homotopy groups, is the zero-sphere (i.e. two points) and denotes the homotopy equivalence of maps from U to W. Note that . One may then show that

is in bijection to the relative homotopy group , thus giving rise to the relative homotopy sequence of pairs

The object is a group for and is abelian for .

Example: Fibration

As a special case, [1] one may take f to be a fibration . Then the mapping fiber Mp has the homotopy lifting property and it follows that Mp and the fiber have the same homotopy type. It follows trivially that maps of the sphere into Mp are homotopic to maps of the sphere to F, that is,

From this, the Puppe sequence gives the homotopy sequence of a fibration:

Example: Weak fibration

Weak fibrations are strictly weaker than fibrations, however, the main result above still holds, although the proof must be altered. The key observation, due to Jean-Pierre Serre, is that, given a weak fibration , and the fiber at the basepoint given by , that there is a bijection

.

This bijection can be used in the relative homotopy sequence above, to obtain the homotopy sequence of a weak fibration, having the same form as the fibration sequence, although with a different connecting map.

Coexact Puppe sequence

Let be a continuous map between CW complexes and let denote a mapping cone of f, (i.e., the cofiber of the map f), so that we have a (cofiber) sequence:

.

Now we can form and suspensions of A and B respectively, and also (this is because suspension might be seen as a functor), obtaining a sequence:

.

Note that suspension preserves cofiber sequences.

Due to this powerful fact we know that is homotopy equivalent to By collapsing to a point, one has a natural map Thus we have a sequence:

Iterating this construction, we obtain the Puppe sequence associated to :

Some properties and consequences

It is a simple exercise in topology to see that every three elements of a Puppe sequence are, up to a homotopy, of the form:

.

By "up to a homotopy", we mean here that every 3 elements in a Puppe sequence are of the above form if regarded as objects and morphisms in the homotopy category.

If one is now given a topological half-exact functor, the above property implies that, after acting with the functor in question on the Puppe sequence associated to , one obtains a long exact sequence.

A result, due to John Milnor, [2] is that if one takes the Eilenberg–Steenrod axioms for homology theory, and replaces excision by the exact sequence of a weak fibration of pairs, then one gets the homotopy analogy of the Eilenberg–Steenrod theorem: there exists a unique sequence of functors with P the category of all pointed pairs of topological spaces.

Remarks

As there are two "kinds" of suspension, unreduced and reduced, one can also consider unreduced and reduced Puppe sequences (at least if dealing with pointed spaces, when it's possible to form reduced suspension).

Related Research Articles

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi-Yau manifolds, string theory, Chern-Simons theory, knot theory, Gromov-Witten invariants, topological quantum field theory, the Chern theorem etc.

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

In topology, a branch of mathematics, a fibration is a generalization of the notion of a fiber bundle. A fiber bundle makes precise the idea of one topological space being "parameterized" by another topological space. A fibration is like a fiber bundle, except that the fibers need not be the same space, nor even homeomorphic; rather, they are just homotopy equivalent. Weak fibrations discard even this equivalence for a more technical property.

Section (fiber bundle) right inverse of a fiber bundle map

In the mathematical field of topology, a section of a fiber bundle is a continuous right inverse of the projection function . In other words, if is a fiber bundle over a base space, :

In mathematical logic and descriptive set theory, the analytical hierarchy is an extension of the arithmetical hierarchy. The analytical hierarchy of formulas includes formulas in the language of second-order arithmetic, which can have quantifiers over both the set of natural numbers, , and over functions from to . The analytical hierarchy of sets classifies sets by the formulas that can be used to define them; it is the lightface version of the projective hierarchy.

In mathematics, the smash product of two pointed spaces and is the quotient of the product space X × Y under the identifications (xy0) ∼ (x0y) for all x ∈ X and y ∈ Y. The smash product is itself a pointed space, with basepoint being the equivalence class of. The smash product is usually denoted X ∧ Y or X ⨳ Y. The smash product depends on the choice of basepoints.

In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.

In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. There are several different categories of spectra, but they all determine the same homotopy category, known as the stable homotopy category.

In mathematics, the stationary phase approximation is a basic principle of asymptotic analysis, applying to the limit as .

Mapping cone (topology)

In mathematics, especially homotopy theory, the mapping cone is a construction of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated . Its dual, a fibration, is called the mapping fibre. The mapping cone can be understood to be a mapping cylinder , with one end of the cylinder collapsed to a point. Thus, mapping cones are frequently applied in the homotopy theory of pointed spaces.

In mathematics, and specifically in the field of homotopy theory, the Freudenthal suspension theorem is the fundamental result leading to the concept of stabilization of homotopy groups and ultimately to stable homotopy theory. It explains the behavior of simultaneously taking suspensions and increasing the index of the homotopy groups of the space in question. It was proved in 1937 by Hans Freudenthal.

In topology, a branch of mathematics, the loop space ΩX of a pointed topological space X is the space of (based) loops in X, i.e. continuous pointed maps from the pointed circle S1 to X, equipped with the compact-open topology. Two loops can be multiplied by concatenation. With this operation, the loop space is an A-space. That is, the multiplication is homotopy coherently associative.

In mathematics, stable homotopy theory is that part of homotopy theory concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space , the homotopy groups stabilize for sufficiently large. In particular, the homotopy groups of spheres stabilize for . For example,

In mathematics, a π-system on a set Ω is a collection P of certain subsets of Ω, such that

Gabor transform

The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. The window function means that the signal near the time being analyzed will have higher weight. The Gabor transform of a signal x(t) is defined by this formula:

In the mathematical disciplines of algebraic topology and homotopy theory, Eckmann–Hilton duality in its most basic form, consists of taking a given diagram for a particular concept and reversing the direction of all arrows, much as in category theory with the idea of the opposite category. A significantly deeper form argues that the fact that the dual notion of a limit is a colimit allows us to change the Eilenberg–Steenrod axioms for homology to give axioms for cohomology. It is named after Beno Eckmann and Peter Hilton.

In homotopy theory, a branch of mathematics, the Barratt–Priddy theorem expresses a connection between the homology of the symmetric groups and mapping spaces of spheres. It is also often stated as a relation between the sphere spectrum and the classifying spaces of the symmetric groups via Quillen's plus construction.

In differential geometry, the integration along fibers of a k-form yields a -form where m is the dimension of the fiber, via "integration".

In algebra, Quillen's Q-construction associates to an exact category an algebraic K-theory. More precisely, given an exact category C, the construction creates a topological space so that is the Grothendieck group of C and, when C is the category of finitely generated projective modules over a ring R, for , is the i-th K-group of R in the classical sense. One puts

This is a glossary of properties and concepts in algebraic topology in mathematics.

References

  1. 1 2 3 4 5 Joseph J. Rotman, An Introduction to Algebraic Topology (1988) Springer-Verlag ISBN   0-387-96678-1 (See Chapter 11 for construction.)
  2. John Milnor "Construction of Universal Bundles I" (1956) Annals of Mathematics , 63 pp. 272-284.