Pseudomanifold

Last updated

In mathematics, a pseudomanifold is a special type of topological space. It looks like a manifold at most of its points, but it may contain singularities. For example, the cone of solutions of forms a pseudomanifold.

Contents

Figure 1: A pinched torus Pinched torus.jpg
Figure 1: A pinched torus

A pseudomanifold can be regarded as a combinatorial realisation of the general idea of a manifold with singularities. The concepts of orientability, orientation and degree of a mapping make sense for pseudomanifolds and moreover, within the combinatorial approach, pseudomanifolds form the natural domain of definition for these concepts. [1] [2]

Definition

A topological space X endowed with a triangulation K is an n-dimensional pseudomanifold if the following conditions hold: [3]

  1. (pure) X = |K| is the union of all n-simplices.
  2. Every (n–1)-simplex is a face of exactly one or two n-simplices for n > 1.
  3. For every pair of n-simplices σ and σ' in K, there is a sequence of n-simplices σ = σ0, σ1, ..., σk = σ' such that the intersection σi ∩ σi+1 is an (n−1)-simplex for all i = 0, ..., k−1.

Implications of the definition

Decomposition

Strongly connected n-complexes can always be assembled from n-simplexes gluing just two of them at (n−1)-simplexes. However, in general, construction by gluing can lead to non-pseudomanifoldness (see Figure 2).

Figure 2: Gluing a manifold along manifold edges (in green) may create non-pseudomanifold edges (in red). A decomposition is possible cutting (in blue) at a singular edge Nonpmnonclok3.svg
Figure 2: Gluing a manifold along manifold edges (in green) may create non-pseudomanifold edges (in red). A decomposition is possible cutting (in blue) at a singular edge

Nevertheless it is always possible to decompose a non-pseudomanifold surface into manifold parts cutting only at singular edges and vertices (see Figure 2 in blue). For some surfaces several non-equivalent options are possible (see Figure 3).

Figure 3: The non pseudomanifold surface on the left can be decomposed into an orientable manifold (central) or into a non-orientable one (on the right). M3foldok.svg
Figure 3: The non pseudomanifold surface on the left can be decomposed into an orientable manifold (central) or into a non-orientable one (on the right).

On the other hand, in higher dimension, for n>2, the situation becomes rather tricky.

Figure 4: Two 3-pseudomanifolds with singularities (in red) that cannot be broken into manifold parts only by cutting at singularities. Pinchedpieaok.svg
Figure 4: Two 3-pseudomanifolds with singularities (in red) that cannot be broken into manifold parts only by cutting at singularities.

Examples

(Note that a pinched torus is not a normal pseudomanifold, since the link of a vertex is not connected.)

(Note that real algebraic varieties aren't always pseudomanifolds, since their singularities can be of codimension 1, take xy=0 for example.)

See also

Related Research Articles

<span class="mw-page-title-main">Algebraic topology</span> Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

<span class="mw-page-title-main">Simplex</span> Multi-dimensional generalization of triangle

In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example,

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In algebraic topology, a k-chain is a formal linear combination of the k-cells in a cell complex. In simplicial complexes, k-chains are combinations of k-simplices, but not necessarily connected. Chains are used in homology; the elements of a homology group are equivalence classes of chains.

<span class="mw-page-title-main">Simplicial complex</span> Mathematical set composed of points, line segments, triangles, and their n-dimensional counterparts

In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts. Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex.

In mathematics, a building is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of isotropic reductive linear algebraic groups over arbitrary fields. The more specialized theory of Bruhat–Tits buildings plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups.

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

<span class="mw-page-title-main">Barycentric subdivision</span>

In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool in algebraic topology.

In algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer . That is,

In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.

In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components.

<span class="mw-page-title-main">Triangulation (topology)</span>

In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.

<span class="mw-page-title-main">Causal dynamical triangulation</span> Hypothetical approach to quantum gravity with emergent spacetime

Causal dynamical triangulation, theorized by Renate Loll, Jan Ambjørn and Jerzy Jurkiewicz, is an approach to quantum gravity that, like loop quantum gravity, is background independent.

In mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants.

Polyhedral space is a certain metric space. A (Euclidean) polyhedral space is a simplicial complex in which every simplex has a flat metric.. In the sequel all polyhedral spaces are taken to be Euclidean polyhedral spaces.

In mathematics, a Δ-setS, often called a Δ-complex or a semi-simplicial set, is a combinatorial object that is useful in the construction and triangulation of topological spaces, and also in the computation of related algebraic invariants of such spaces. A Δ-set is somewhat more general than a simplicial complex, yet not quite as sophisticated as a simplicial set. Simplicial sets have additional structure, so that every simplicial set is also a semi-simplicial set.

In mathematics, a Stanley–Reisner ring, or face ring, is a quotient of a polynomial algebra over a field by a square-free monomial ideal. Such ideals are described more geometrically in terms of finite simplicial complexes. The Stanley–Reisner ring construction is a basic tool within algebraic combinatorics and combinatorial commutative algebra. Its properties were investigated by Richard Stanley, Melvin Hochster, and Gerald Reisner in the early 1970s.

In mathematics, a shelling of a simplicial complex is a way of gluing it together from its maximal simplices in a well-behaved way. A complex admitting a shelling is called shellable.

<span class="mw-page-title-main">Simplex tree</span> Topological data

In topological data analysis, a simplex tree is a type of trie used to represent efficiently any general simplicial complex. Through its nodes, this data structure notably explicitly represents all the simplices. Its flexible structure allows implementation of many basic operations useful to computing persistent homology. This data structure was invented by Jean-Daniel Boissonnat and Clément Maria in 2014, in the article The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes. This data structure offers efficient operations on sparse simplicial complexes. For dense or maximal simplices, Skeleton-Blocker representations or Toplex Map representations are used.

References

  1. Seifert, H.; Threlfall, W. (1980), Textbook of Topology , Academic Press Inc., ISBN   0-12-634850-2
  2. Spanier, H. (1966), Algebraic Topology, McGraw-Hill Education, ISBN   0-07-059883-5
  3. 1 2 Brasselet, J. P. (1996). "Intersection of Algebraic Cycles". Journal of Mathematical Sciences. Springer New York. 82 (5): 3625–3632. doi:10.1007/bf02362566. S2CID   122992009.
  4. 1 2 3 4 5 D. V. Anosov (2001) [1994], "Pseudo-manifold", Encyclopedia of Mathematics , EMS Press , retrieved August 6, 2010
  5. 1 2 3 F. Morando. Decomposition and Modeling in the Non-Manifold domain (PhD). pp. 139–142. arXiv: 1904.00306v1 .
  6. Baez, John C; Christensen, J Daniel; Halford, Thomas R; Tsang, David C (2002-08-22). "Spin foam models of Riemannian quantum gravity". Classical and Quantum Gravity. IOP Publishing. 19 (18): 4627–4648. arXiv: gr-qc/0202017 . doi:10.1088/0264-9381/19/18/301. ISSN   0264-9381.