Lefschetz fixed-point theorem

Last updated

In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space to itself by means of traces of the induced mappings on the homology groups of . It is named after Solomon Lefschetz, who first stated it in 1926.

Contents

The counting is subject to an imputed multiplicity at a fixed point called the fixed-point index. A weak version of the theorem is enough to show that a mapping without any fixed point must have rather special topological properties (like a rotation of a circle).

Formal statement

For a formal statement of the theorem, let

be a continuous map from a compact triangulable space to itself. Define the Lefschetz number of by

the alternating (finite) sum of the matrix traces of the linear maps induced by on , the singular homology groups of with rational coefficients.

A simple version of the Lefschetz fixed-point theorem states: if

then has at least one fixed point, i.e., there exists at least one in such that . In fact, since the Lefschetz number has been defined at the homology level, the conclusion can be extended to say that any map homotopic to has a fixed point as well.

Note however that the converse is not true in general: may be zero even if has fixed points, as is the case for the identity map on odd-dimensional spheres.

Sketch of a proof

First, by applying the simplicial approximation theorem, one shows that if has no fixed points, then (possibly after subdividing ) is homotopic to a fixed-point-free simplicial map (i.e., it sends each simplex to a different simplex). This means that the diagonal values of the matrices of the linear maps induced on the simplicial chain complex of must be all be zero. Then one notes that, in general, the Lefschetz number can also be computed using the alternating sum of the matrix traces of the aforementioned linear maps (this is true for almost exactly the same reason that the Euler characteristic has a definition in terms of homology groups; see below for the relation to the Euler characteristic). In the particular case of a fixed-point-free simplicial map, all of the diagonal values are zero, and thus the traces are all zero.

Lefschetz–Hopf theorem

A stronger form of the theorem, also known as the Lefschetz–Hopf theorem, states that, if has only finitely many fixed points, then

where is the set of fixed points of , and denotes the index of the fixed point . [1] From this theorem one deduces the Poincaré–Hopf theorem for vector fields, since every vector field on compact differential manifold induce flow in a natural way. For every is continuous mapping homotopic to identity (thus have same Lefschetz number) and for small indices of fixed points equals to indices of zeroes of vector field.

Relation to the Euler characteristic

The Lefschetz number of the identity map on a finite CW complex can be easily computed by realizing that each can be thought of as an identity matrix, and so each trace term is simply the dimension of the appropriate homology group. Thus the Lefschetz number of the identity map is equal to the alternating sum of the Betti numbers of the space, which in turn is equal to the Euler characteristic . Thus we have

Relation to the Brouwer fixed-point theorem

The Lefschetz fixed-point theorem generalizes the Brouwer fixed-point theorem, which states that every continuous map from the -dimensional closed unit disk to must have at least one fixed point.

This can be seen as follows: is compact and triangulable, all its homology groups except are zero, and every continuous map induces the identity map , whose trace is one; all this together implies that is non-zero for any continuous map .

Historical context

Lefschetz presented his fixed-point theorem in ( Lefschetz 1926 ). Lefschetz's focus was not on fixed points of maps, but rather on what are now called coincidence points of maps.

Given two maps and from an orientable manifold to an orientable manifold of the same dimension, the Lefschetz coincidence number of and is defined as

where is as above, is the homomorphism induced by on the cohomology groups with rational coefficients, and and are the Poincaré duality isomorphisms for and , respectively.

Lefschetz proved that if the coincidence number is nonzero, then and have a coincidence point. He noted in his paper that letting and letting be the identity map gives a simpler result, which we now know as the fixed-point theorem.

Frobenius

Let be a variety defined over the finite field with elements and let be the base change of to the algebraic closure of . The Frobenius endomorphism of (often the geometric Frobenius, or just the Frobenius), denoted by , maps a point with coordinates to the point with coordinates . Thus the fixed points of are exactly the points of with coordinates in ; the set of such points is denoted by . The Lefschetz trace formula holds in this context, and reads:

This formula involves the trace of the Frobenius on the étale cohomology, with compact supports, of with values in the field of -adic numbers, where is a prime coprime to .

If is smooth and equidimensional, this formula can be rewritten in terms of the arithmetic Frobenius, which acts as the inverse of on cohomology:

This formula involves usual cohomology, rather than cohomology with compact supports.

The Lefschetz trace formula can also be generalized to algebraic stacks over finite fields.

See also

Notes

  1. Dold, Albrecht (1980). Lectures on algebraic topology. Vol. 200 (2nd ed.). Berlin, New York: Springer-Verlag. ISBN   978-3-540-10369-1. MR   0606196., Proposition VII.6.6.

Related Research Articles

In mathematics, the Weil conjectures were highly influential proposals by André Weil. They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying adbc ≠ 0.

In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index is equal to the topological index. It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.

<span class="mw-page-title-main">Cross-ratio</span> An invariant under projective transformations

In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points A, B, C, D on a line, their cross ratio is defined as

In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n-dimensional oriented closed manifold (compact and without boundary), then the kth cohomology group of M is isomorphic to the (nk)th homology group of M, for all integers k

<span class="mw-page-title-main">Barycentric subdivision</span>

In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool in algebraic topology.

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

<span class="mw-page-title-main">Grothendieck–Riemann–Roch theorem</span> Result in algebraic geometry

In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.

In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory.

In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic manifold. The GW invariants may be packaged as a homology or cohomology class in an appropriate space, or as the deformed cup product of quantum cohomology. These invariants have been used to distinguish symplectic manifolds that were previously indistinguishable. They also play a crucial role in closed type IIA string theory. They are named after Mikhail Gromov and Edward Witten.

In mathematics, specifically in algebraic geometry and algebraic topology, the Lefschetz hyperplane theorem is a precise statement of certain relations between the shape of an algebraic variety and the shape of its subvarieties. More precisely, the theorem says that for a variety X embedded in projective space and a hyperplane section Y, the homology, cohomology, and homotopy groups of X determine those of Y. A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories.

In mathematics, a local system on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943.

In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called small and big; in general, the latter is more complicated and contains more information than the former. In each, the choice of coefficient ring significantly affects its structure, as well.

In mathematics, the Abel–Jacobi map is a construction of algebraic geometry which relates an algebraic curve to its Jacobian variety. In Riemannian geometry, it is a more general construction mapping a manifold to its Jacobi torus. The name derives from the theorem of Abel and Jacobi that two effective divisors are linearly equivalent if and only if they are indistinguishable under the Abel–Jacobi map.

In mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of image functors for sheaves. It is needed to express Verdier duality in its most general form.

In algebraic geometry, the Grothendieck trace formula expresses the number of points of a variety over a finite field in terms of the trace of the Frobenius endomorphism on its cohomology groups. There are several generalizations: the Frobenius endomorphism can be replaced by a more general endomorphism, in which case the points over a finite field are replaced by its fixed points, and there is also a more general version for a sheaf over the variety, where the cohomology groups are replaced by cohomology with coefficients in the sheaf.

In algebraic geometry, Behrend's trace formula is a generalization of the Grothendieck–Lefschetz trace formula to a smooth algebraic stack over a finite field conjectured in 1993 and proven in 2003 by Kai Behrend. Unlike the classical one, the formula counts points in the "stacky way"; it takes into account the presence of nontrivial automorphisms.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In complex geometry, the Kähler identities are a collection of identities between operators on a Kähler manifold relating the Dolbeault operators and their adjoints, contraction and wedge operators of the Kähler form, and the Laplacians of the Kähler metric. The Kähler identities combine with results of Hodge theory to produce a number of relations on de Rham and Dolbeault cohomology of compact Kähler manifolds, such as the Lefschetz hyperplane theorem, the hard Lefschetz theorem, the Hodge-Riemann bilinear relations, and the Hodge index theorem. They are also, again combined with Hodge theory, important in proving fundamental analytical results on Kähler manifolds, such as the -lemma, the Nakano inequalities, and the Kodaira vanishing theorem.

References