Holomorphic Lefschetz fixed-point formula

Last updated

In mathematics, the Holomorphic Lefschetz formula is an analogue for complex manifolds of the Lefschetz fixed-point formula that relates a sum over the fixed points of a holomorphic vector field of a compact complex manifold to a sum over its Dolbeault cohomology groups.

Contents

Statement

If f is an automorphism of a compact complex manifold M with isolated fixed points, then

where

See also

Related Research Articles

In mathematics, the Weil conjectures were highly influential proposals by André Weil (1949). They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

In mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition for a function to be invertible in a neighborhood of a point in its domain: namely, that its derivative is continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse function. In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the Jacobian matrix of the inverse. There are also versions of the inverse function theorem for complex holomorphic functions, for differentiable maps between manifolds, for differentiable functions between Banach spaces, and so forth.

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form

In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index is equal to the topological index. It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.

The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variables, that has become a common name for that whole field of study and Mathematics Subject Classification has, as a top-level heading. A function is n-tuples of complex numbers, classically studied on the complex coordinate space .

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space to itself by means of traces of the induced mappings on the homology groups of . It is named after Solomon Lefschetz, who first stated it in 1926.

In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.

In mathematics, a complex differential form is a differential form on a manifold which is permitted to have complex coefficients.

In mathematics, the Lefschetz zeta-function is a tool used in topological periodic and fixed point theory, and dynamical systems. Given a continuous map , the zeta-function is defined as the formal series

In mathematics, the Atiyah–Bott fixed-point theorem, proven by Michael Atiyah and Raoul Bott in the 1960s, is a general form of the Lefschetz fixed-point theorem for smooth manifolds M, which uses an elliptic complex on M. This is a system of elliptic differential operators on vector bundles, generalizing the de Rham complex constructed from smooth differential forms which appears in the original Lefschetz fixed-point theorem.

The Minakshisundaram–Pleijel zeta function is a zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian manifold. It was introduced by Subbaramiah Minakshisundaram and Åke Pleijel (1949). The case of a compact region of the plane was treated earlier by Torsten Carleman (1935).

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In algebraic geometry, a branch of mathematics, the Lefschetz theorem on (1,1)-classes, named after Solomon Lefschetz, is a classical statement relating holomorphic line bundles on a compact Kähler manifold to classes in its integral cohomology. It is the only case of the Hodge conjecture which has been proved for all Kähler manifolds.

In symplectic topology, a Fukaya category of a symplectic manifold is a category whose objects are Lagrangian submanifolds of , and morphisms are Floer chain groups: . Its finer structure can be described in the language of quasi categories as an A-category.

In mathematics, Picard–Lefschetz theory studies the topology of a complex manifold by looking at the critical points of a holomorphic function on the manifold. It was introduced by Émile Picard for complex surfaces in his book Picard & Simart (1897), and extended to higher dimensions by Solomon Lefschetz (1924). It is a complex analog of Morse theory that studies the topology of a real manifold by looking at the critical points of a real function. Pierre Deligne and Nicholas Katz (1973) extended Picard–Lefschetz theory to varieties over more general fields, and Deligne used this generalization in his proof of the Weil conjectures.

In mathematics, the Bott residue formula, introduced by Bott (1967), describes a sum over the fixed points of a holomorphic vector field of a compact complex manifold.

In algebraic geometry, the Grothendieck trace formula expresses the number of points of a variety over a finite field in terms of the trace of the Frobenius endomorphism on its cohomology groups. There are several generalizations: the Frobenius endomorphism can be replaced by a more general endomorphism, in which case the points over a finite field are replaced by its fixed points, and there is also a more general version for a sheaf over the variety, where the cohomology groups are replaced by cohomology with coefficients in the sheaf.

In mathematics, specifically in the study of vector bundles over complex Kähler manifolds, the Nakano vanishing theorem, sometimes called the Akizuki–Nakano vanishing theorem, generalizes the Kodaira vanishing theorem. Given a compact complex manifold M with a holomorphic line bundle F over M, the Nakano vanishing theorem provides a condition on when the cohomology groups equal zero. Here, denotes the sheaf of holomorphic (p,0)-forms taking values on F. The theorem states that, if the first Chern class of F is negative,

References