Coincidence point

Last updated

In mathematics, a coincidence point (or simply coincidence) of two functions is a point in their common domain having the same image.

Formally, given two functions

we say that a point x in X is a coincidence point of f and g if f(x) = g(x). [1]

Coincidence theory (the study of coincidence points) is, in most settings, a generalization of fixed point theory, the study of points x with f(x) = x. Fixed point theory is the special case obtained from the above by letting X = Y and taking g to be the identity function.

Just as fixed point theory has its fixed-point theorems, there are theorems that guarantee the existence of coincidence points for pairs of functions. Notable among them, in the setting of manifolds, is the Lefschetz coincidence theorem, which is typically known only in its special case formulation for fixed points. [2]

Coincidence points, like fixed points, are today studied using many tools from mathematical analysis and topology. An equaliser is a generalization of the coincidence set. [3]

Related Research Articles

Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function mapping a nonempty compact convex set to itself there is a point such that . The simplest forms of Brouwer's theorem are for continuous functions from a closed interval in the real numbers to itself or from a closed disk to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset of Euclidean space to itself.

In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number such that for all x and y in M,

<span class="mw-page-title-main">Ultrafilter</span> Maximal proper filter

In the mathematical field of order theory, an ultrafilter on a given partially ordered set is a certain subset of namely a maximal filter on that is, a proper filter on that cannot be enlarged to a bigger proper filter on

<span class="mw-page-title-main">Faltings's theorem</span> Curves of genus > 1 over the rationals have only finitely many rational points

Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. The conjecture was later generalized by replacing by any number field.

Invariance of domain is a theorem in topology about homeomorphic subsets of Euclidean space . It states:

In mathematics, the Weil conjectures were highly influential proposals by André Weil (1949). They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index is equal to the topological index. It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.

<span class="mw-page-title-main">Raoul Bott</span> Hungarian-American mathematician

Raoul Bott was a Hungarian-American mathematician known for numerous foundational contributions to geometry in its broad sense. He is best known for his Bott periodicity theorem, the Morse–Bott functions which he used in this context, and the Borel–Bott–Weil theorem.

In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space to itself by means of traces of the induced mappings on the homology groups of . It is named after Solomon Lefschetz, who first stated it in 1926.

In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

In mathematics, a fixed-point theorem is a result saying that a function F will have at least one fixed point (a point x for which F(x) = x), under some conditions on F that can be stated in general terms.

In mathematics, the fixed-point index is a concept in topological fixed-point theory, and in particular Nielsen theory. The fixed-point index can be thought of as a multiplicity measurement for fixed points.

In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is mapped to a set containing it. The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions.

In mathematics, specifically in algebraic geometry and algebraic topology, the Lefschetz hyperplane theorem is a precise statement of certain relations between the shape of an algebraic variety and the shape of its subvarieties. More precisely, the theorem says that for a variety X embedded in projective space and a hyperplane section Y, the homology, cohomology, and homotopy groups of X determine those of Y. A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories.

<span class="mw-page-title-main">Set-valued function</span> Function whose values are sets (mathematics)

A set-valued function is a mathematical function that maps elements from one set, the domain of the function, to subsets of

In mathematics, Arakelov theory is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.

Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the iteration of self-maps of the complex plane or other complex algebraic varieties. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, p-adic, or algebraic points under repeated application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties in terms of underlying geometric structures.

In mathematics, Picard–Lefschetz theory studies the topology of a complex manifold by looking at the critical points of a holomorphic function on the manifold. It was introduced by Émile Picard for complex surfaces in his book Picard & Simart (1897), and extended to higher dimensions by Solomon Lefschetz (1924). It is a complex analog of Morse theory that studies the topology of a real manifold by looking at the critical points of a real function. Pierre Deligne and Nicholas Katz (1973) extended Picard–Lefschetz theory to varieties over more general fields, and Deligne used this generalization in his proof of the Weil conjectures.

In mathematics, the Poincaré–Miranda theorem is a generalization of intermediate value theorem, from a single function in a single dimension, to n functions in n dimensions. It says as follows:

References

  1. Granas, Andrzej; Dugundji, James (2003), Fixed point theory, Springer Monographs in Mathematics, New York: Springer-Verlag, p. xvi+690, doi:10.1007/978-0-387-21593-8, ISBN   0-387-00173-5, MR   1987179 .
  2. Górniewicz, Lech (1981), "On the Lefschetz coincidence theorem", Fixed point theory (Sherbrooke, Que., 1980), Lecture Notes in Math., vol. 886, Springer, Berlin-New York, pp. 116–139, doi:10.1007/BFb0092179, MR   0643002 .
  3. Staecker, P. Christopher (2011), "Nielsen equalizer theory", Topology and Its Applications, 158 (13): 1615–1625, arXiv: 1008.2154 , doi:10.1016/j.topol.2011.05.032, MR   2812471, S2CID   54999598 .