In algebraic topology, a G-fibration or principal fibration is a generalization of a principal G-bundle, just as a fibration is a generalization of a fiber bundle. By definition, [1] given a topological monoid G, a G-fibration is a fibration p: P→B together with a continuous right monoid action P × G → P such that
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
In topology, a branch of mathematics, a fibration is a generalization of the notion of a fiber bundle. A fiber bundle makes precise the idea of one topological space being "parameterized" by another topological space. A fibration is like a fiber bundle, except that the fibers need not be the same space, nor even homeomorphic; rather, they are just homotopy equivalent. Weak fibrations discard even this equivalence for a more technical property.
In mathematics, and particularly topology, a fiber bundle is a space that is locally a product space, but globally may have a different topological structure. Specifically, the similarity between a space E and a product space is defined using a continuous surjective map
A principal G-bundle is a prototypical example of a G-fibration. Another example is Moore's path space fibration: namely, let be the space of paths of various length in a based space X. Then the fibration that sends each path to its end-point is a G-fibration with G the space of loops of various lengths in X.
In mathematics, a functor is a map between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.
In mathematics, a group action is a formal way of interpreting the manner in which the elements of a group correspond to transformations of some space in a way that preserves the structure of that space. Common examples of spaces that groups act on are sets, vector spaces, and topological spaces. Actions of groups on vector spaces are called representations of the group.
In mathematics, in particular abstract algebra, a graded ring is a ring that is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X × G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equipped with
In the mathematical field of topology, a section of a fiber bundle is a continuous right inverse of the projection function . In other words, if is a fiber bundle over a base space, :
In mathematics, the theory of fiber bundles with a structure group allows an operation of creating an associated bundle, in which the typical fiber of a bundle changes from to , which are both topological spaces with a group action of . For a fibre bundle F with structure group G, the transition functions of the fibre in an overlap of two coordinate systems Uα and Uβ are given as a G-valued function gαβ on Uα∩Uβ. One may then construct a fibre bundle F′ as a new fibre bundle having the same transition functions, but possibly a different fibre.
In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.
In mathematics, in particular in homotopy theory within algebraic topology, the homotopy lifting property is a technical condition on a continuous function from a topological space E to another one, B. It is designed to support the picture of E "above" B by allowing a homotopy taking place in B to be moved "upstairs" to E.
In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle EG → BG. As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.
In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space X with action of a topological group G is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.
In algebraic geometry, given a smooth algebraic group G, a G-torsor or a principal G-bundleP over a scheme X is a scheme with an action of G that is locally trivial in the given Grothendieck topology in the sense that the base change along "some" covering map is the trivial torsor . Equivalently, a G-torsor P on X is a principal homogeneous space for the group scheme
This is a glossary of properties and concepts in algebraic topology in mathematics.
In algebraic topology, the path space fibration over a based space is a fibration of the form
In the mathematical field of topology, a sphere bundle is a fiber bundle in which the fibers are spheres of some dimension n. Similarly, in a disk bundle, the fibers are disks . From a topological perspective, there is no difference between sphere bundles and disk bundles: this is a consequence of the Alexander trick, which implies
This topology-related article is a stub. You can help Wikipedia by expanding it. |