Nonabelian algebraic topology

Last updated

In mathematics, nonabelian algebraic topology studies an aspect of algebraic topology that involves (inevitably noncommutative) higher-dimensional algebras.

Many of the higher-dimensional algebraic structures are noncommutative and, therefore, their study is a very significant part of nonabelian category theory, and also of Nonabelian Algebraic Topology (NAAT), [1] which generalises to higher dimensions ideas coming from the fundamental group. [2] Such algebraic structures in dimensions greater than 1 develop the nonabelian character of the fundamental group, and they are in a precise sense ‘more nonabelian than the groups'. [1] [3] These noncommutative, or more specifically, nonabelian structures reflect more accurately the geometrical complications of higher dimensions than the known homology and homotopy groups commonly encountered in classical algebraic topology.

An important part of nonabelian algebraic topology is concerned with the properties and applications of homotopy groupoids and filtered spaces. Noncommutative double groupoids and double algebroids are only the first examples of such higher-dimensional structures that are nonabelian. The new methods of Nonabelian Algebraic Topology (NAAT) "can be applied to determine homotopy invariants of spaces, and homotopy classification of maps, in cases which include some classical results, and allow results not available by classical methods". Cubical omega-groupoids, higher homotopy groupoids, crossed modules, crossed complexes and Galois groupoids are key concepts in developing applications related to homotopy of filtered spaces, higher-dimensional space structures, the construction of the fundamental groupoid of a topos E in the general theory of topoi, and also in their physical applications in nonabelian quantum theories, and recent developments in quantum gravity, as well as categorical and topological dynamics. [4] Further examples of such applications include the generalisations of noncommutative geometry formalizations of the noncommutative standard models via fundamental double groupoids and spacetime structures even more general than topoi or the lower-dimensional noncommutative spacetimes encountered in several topological quantum field theories and noncommutative geometry theories of quantum gravity.

A fundamental result in NAAT is the generalised, higher homotopy van Kampen theorem proven by R. Brown, which states that "the homotopy type of a topological space can be computed by a suitable colimit or homotopy colimit over homotopy types of its pieces''. A related example is that of van Kampen theorems for categories of covering morphisms in lextensive categories. [5] Other reports of generalisations of the van Kampen theorem include statements for 2-categories [6] and a topos of topoi . Important results in higher-dimensional algebra are also the extensions of the Galois theory in categories and variable categories, or indexed/'parametrized' categories. [7] The Joyal–Tierney representation theorem for topoi is also a generalisation of the Galois theory. [8] Thus, indexing by bicategories in the sense of Benabou one also includes here the Joyal–Tierney theory. [9]

Related Research Articles

Category theory Branch of mathematics

Category theory formalizes mathematical structure and its concepts in terms of a labeled directed graph called a category, whose nodes are called objects, and whose labelled directed edges are called arrows. A category has two basic properties: the ability to compose the arrows associatively, and the existence of an identity arrow for each object. The language of category theory has been used to formalize concepts of other high-level abstractions such as sets, rings, and groups. Informally, category theory is a general theory of functions.

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups.

Topology Branch of mathematics

In mathematics, topology is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling and bending, but not tearing or gluing.

Algebraic topology branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

In mathematics, Grothendieck's Galois theory is an abstract approach to the Galois theory of fields, developed around 1960 to provide a way to study the fundamental group of algebraic topology in the setting of algebraic geometry. It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin based on linear algebra, which became standard from about the 1930s.

In mathematics, the Seifert–van Kampen theorem of algebraic topology, sometimes just called van Kampen's theorem, expresses the structure of the fundamental group of a topological space in terms of the fundamental groups of two open, path-connected subspaces that cover . It can therefore be used for computations of the fundamental group of spaces that are constructed out of simpler ones.

In mathematics, the Eckmann–Hilton argument is an argument about two unital magma structures on a set where one is a homomorphism for the other. Given this, the structures can be shown to coincide, and the resulting magma demonstrated to be commutative monoid. This can then be used to prove the commutativity of the higher homotopy groups. The principle is named after Beno Eckmann and Peter Hilton, who used it in a 1962 paper.

Path (topology) topological object

In mathematics, a path in a topological space X is a continuous function f from the unit interval I = [0,1] to X

In mathematics, and especially in homotopy theory, a crossed module consists of groups G and H, where G acts on H by automorphisms (which we will write on the left, , and a homomorphism of groups

In mathematics, higher category theory is the part of category theory at a higher order, which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology, where one studies algebraic invariants of spaces, such as their fundamental weak ∞-groupoid.

André Joyal Canadian mathematician

André Joyal is a professor of mathematics at the Université du Québec à Montréal who works on category theory. He was a member of the School of Mathematics at the Institute for Advanced Study in 2013, where he was invited to join the Special Year on Univalent Foundations of Mathematics.

In mathematics, especially (higher) category theory, higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra.

In mathematics, a 2-group, or 2-dimensional higher group, is a certain combination of group and groupoid. The 2-groups are part of a larger hierarchy of n-groups. In some of the literature, 2-groups are also called gr-categories or groupal groupoids.

In mathematics, directed algebraic topology is a refinement of algebraic topology for directed spaces, topological spaces and their combinatorial counterparts equipped with some notion of direction. Some common examples of directed spaces are spacetimes and simplicial sets. The basic goal is to find algebraic invariants that classify directed spaces up to directed analogues of homotopy equivalence. For example, homotopy groups and fundamental n-groupoids of spaces generalize to homotopy monoids and fundamental n-categories of directed spaces. Directed algebraic topology, like algebraic topology, is motivated by the need to describe qualitative properties of complex systems in terms of algebraic properties of state spaces, which are often directed by time. Thus directed algebraic topology finds applications in Concurrency, Network traffic control, General Relativity, Noncommutative Geometry, Rewriting Theory, and Biological systems.

In mathematics, especially in higher-dimensional algebra and homotopy theory, a double groupoid generalises the notion of groupoid and of category to a higher dimension.

Ronald Brown (mathematician) British mathematician

Ronald Brown is an English mathematician. Emeritus Professor in the School of Computer Science at Bangor University, he has authored many books and more than 160 journal articles.

In mathematics, more specifically category theory, a quasi-category is a generalization of the notion of a category. The study of such generalizations is known as higher category theory.

In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence states that there is an equivalence between the category of chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the th homology group of a chain complex is the th homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy.

In algebraic topology, the fundamental groupoid of a topological space is a generalization of the fundamental group. It is a topological invariant, and so can be used to distinguish non-homeomorphic spaces. The fundamental groupoid captures information about both the connectedness and homotopy type of the space.

References

Notes

  1. 1 2 3
  2. https://arxiv.org/abs/math/0407275 Nonabelian Algebraic Topology by Ronald Brown. 15 Jul 2004
  3. http://golem.ph.utexas.edu/category/2009/06/nonabelian_algebraic_topology.html Nonabelian Algebraic Topology posted by John Baez
  4. Baianu, I. C. (2007). "A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity". Axiomathes. 17 (3–4): 353–408. doi:10.1007/s10516-007-9012-1.
  5. Ronald Brown and George Janelidze, van Kampen theorems for categories of covering morphisms in lextensive categories, J. Pure Appl. Algebra. 119:255–263, (1997)
  6. https://web.archive.org/web/20050720094804/http://www.maths.usyd.edu.au/u/stevel/papers/vkt.ps.gz Marta Bunge and Stephen Lack. Van Kampen theorems for 2-categories and toposes
  7. Janelidze, George (1993). "Galois theory in variable categories". Applied Categorical Structures. 1: 103–110. doi:10.1007/BF00872989.
  8. Joyal, André; Tierney, Myles (1984). An extension of the Galois theory of Grothendieck. 309. American Mathematical Society. ISBN   978-0-8218-2312-5.
  9. MSC(1991): 18D30,11R32,18D35,18D05