Mapping cylinder

Last updated

In mathematics, specifically algebraic topology, the mapping cylinder [1] of a continuous function between topological spaces and is the quotient

Contents

where the denotes the disjoint union, and ~ is the equivalence relation generated by

That is, the mapping cylinder is obtained by gluing one end of to via the map . Notice that the "top" of the cylinder is homeomorphic to , while the "bottom" is the space . It is common to write for , and to use the notation or for the mapping cylinder construction. That is, one writes

with the subscripted cup symbol denoting the equivalence. The mapping cylinder is commonly used to construct the mapping cone , obtained by collapsing one end of the cylinder to a point. Mapping cylinders are central to the definition of cofibrations.

Basic properties

The bottom Y is a deformation retract of . The projection splits (via ), and the deformation retraction is given by:

(where points in stay fixed because for all ).

The map is a homotopy equivalence if and only if the "top" is a strong deformation retract of . [2] An explicit formula for the strong deformation retraction can be worked out. [3]

Examples

Mapping cylinder of a fiber bundle

For a fiber bundle with fiber , the mapping cylinder

has the equivalence relation

for . Then, there is a canonical map sending a point to the point , giving a fiber bundle

whose fiber is the cone . To see this, notice the fiber over a point is the quotient space

where every point in is equivalent.

Interpretation

The mapping cylinder may be viewed as a way to replace an arbitrary map by an equivalent cofibration, in the following sense:

Given a map , the mapping cylinder is a space , together with a cofibration and a surjective homotopy equivalence (indeed, Y is a deformation retract of ), such that the composition equals f.

Mapping cylinder.png

Thus the space Y gets replaced with a homotopy equivalent space , and the map f with a lifted map . Equivalently, the diagram

gets replaced with a diagram

together with a homotopy equivalence between them.

The construction serves to replace any map of topological spaces by a homotopy equivalent cofibration.

Note that pointwise, a cofibration is a closed inclusion.

Applications

Mapping cylinders are quite common homotopical tools. One use of mapping cylinders is to apply theorems concerning inclusions of spaces to general maps, which might not be injective.

Consequently, theorems or techniques (such as homology, cohomology or homotopy theory) which are only dependent on the homotopy class of spaces and maps involved may be applied to with the assumption that and that is actually the inclusion of a subspace.

Another, more intuitive appeal of the construction is that it accords with the usual mental image of a function as "sending" points of to points of and hence of embedding within despite the fact that the function need not be one-to-one.

Categorical application and interpretation

One can use the mapping cylinder to construct homotopy colimits:[ citation needed ] this follows from the general statement that any category with all pushouts and coequalizers has all colimits. That is, given a diagram, replace the maps by cofibrations (using the mapping cylinder) and then take the ordinary pointwise limit (one must take a bit more care, but mapping cylinders are a component).

Conversely, the mapping cylinder is the homotopy pushout of the diagram where and .

Mapping telescope

Given a sequence of maps

the mapping telescope is the homotopical direct limit. If the maps are all already cofibrations (such as for the orthogonal groups ), then the direct limit is the union, but in general one must use the mapping telescope. The mapping telescope is a sequence of mapping cylinders, joined end-to-end. The picture of the construction looks like a stack of increasingly large cylinders, like a telescope.

Formally, one defines it as

See also

Related Research Articles

<span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

<span class="mw-page-title-main">Quotient space (topology)</span> Topological space construction

In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map. In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.

The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics.

<span class="mw-page-title-main">Cone (topology)</span>

In topology, especially algebraic topology, the coneof a topological space is intuitively obtained by stretching X into a cylinder and then collapsing one of its end faces to a point. The cone of X is denoted by or by .

In homotopy theory, the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants determines a topological property of a mapping.

In mathematics, in particular homotopy theory, a continuous mapping between topological spaces

<span class="mw-page-title-main">Mapping cone (topology)</span>

In mathematics, especially homotopy theory, the mapping cone is a construction of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated . Its dual, a fibration, is called the mapping fibre. The mapping cone can be understood to be a mapping cylinder , with one end of the cylinder collapsed to a point. Thus, mapping cones are frequently applied in the homotopy theory of pointed spaces.

In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace.

In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes. The concept was introduced by Daniel G. Quillen.

In mathematics, the Puppe sequence is a construction of homotopy theory, so named after Dieter Puppe. It comes in two forms: a long exact sequence, built from the mapping fibre, and a long coexact sequence, built from the mapping cone. Intuitively, the Puppe sequence allows us to think of homology theory as a functor that takes spaces to long-exact sequences of groups. It is also useful as a tool to build long exact sequences of relative homotopy groups.

In mathematics, especially homotopy theory, the homotopy fiber is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groups

In mathematics, directed algebraic topology is a refinement of algebraic topology for directed spaces, topological spaces and their combinatorial counterparts equipped with some notion of direction. Some common examples of directed spaces are spacetimes and simplicial sets. The basic goal is to find algebraic invariants that classify directed spaces up to directed analogues of homotopy equivalence. For example, homotopy groups and fundamental n-groupoids of spaces generalize to homotopy monoids and fundamental n-categories of directed spaces. Directed algebraic topology, like algebraic topology, is motivated by the need to describe qualitative properties of complex systems in terms of algebraic properties of state spaces, which are often directed by time. Thus directed algebraic topology finds applications in concurrency, network traffic control, general relativity, noncommutative geometry, rewriting theory, and biological systems.

In the mathematical disciplines of algebraic topology and homotopy theory, Eckmann–Hilton duality in its most basic form, consists of taking a given diagram for a particular concept and reversing the direction of all arrows, much as in category theory with the idea of the opposite category. A significantly deeper form argues that the fact that the dual notion of a limit is a colimit allows us to change the Eilenberg–Steenrod axioms for homology to give axioms for cohomology. It is named after Beno Eckmann and Peter Hilton.

In algebraic topology, the nthsymmetric product of a topological space consists of the unordered n-tuples of its elements. If one fixes a basepoint, there is a canonical way of embedding the lower-dimensional symmetric products into the higher-dimensional ones. That way, one can consider the colimit over the symmetric products, the infinite symmetric product. This construction can easily be extended to give a homotopy functor.

In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category.

In mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of limit and colimit extended to the homotopy category . The main idea is this: if we have a diagram

In category theory, a branch of mathematics, a (left) Bousfield localization of a model category replaces the model structure with another model structure with the same cofibrations but with more weak equivalences.

In algebraic topology, a quasifibration is a generalisation of fibre bundles and fibrations introduced by Albrecht Dold and René Thom. Roughly speaking, it is a continuous map p: EB having the same behaviour as a fibration regarding the (relative) homotopy groups of E, B and p−1(x). Equivalently, one can define a quasifibration to be a continuous map such that the inclusion of each fibre into its homotopy fibre is a weak equivalence. One of the main applications of quasifibrations lies in proving the Dold-Thom theorem.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In algebraic topology, the path space fibration over a based space is a fibration of the form

References

  1. Hatcher, Allen (2003). Algebraic topology . Cambridge: Cambridge Univ. Pr. p.  2. ISBN   0-521-79540-0.
  2. Hatcher, Allen (2003). Algebraic topology . Cambridge: Cambridge Univ. Pr. p.  15. ISBN   0-521-79540-0.
  3. Aguado, Alex. "A Short Note on Mapping Cylinders". arXiv: 1206.1277 [math.AT].