Simplicial group

Last updated

In mathematics, more precisely, in the theory of simplicial sets, a simplicial group is a simplicial object in the category of groups. Similarly, a simplicial abelian group is a simplicial object in the category of abelian groups. A simplicial group is a Kan complex (in particular, its homotopy groups make sense). The Dold–Kan correspondence says that a simplicial abelian group may be identified with a chain complex. In fact it can be shown that any simplicial abelian group is non-canonically homotopy equivalent to a product of Eilenberg–MacLane spaces, [1]

Contents

A commutative monoid in the category of simplicial abelian groups is a simplicial commutative ring.

Eckmann (1945) discusses a simplicial analogue of the fact that a cohomology class on a Kähler manifold has a unique harmonic representative and deduces Kirchhoff's circuit laws from these observations.

See also

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, the Eckmann–Hilton argument is an argument about two unital magma structures on a set where one is a homomorphism for the other. Given this, the structures are the same, and the resulting magma is a commutative monoid. This can then be used to prove the commutativity of the higher homotopy groups. The principle is named after Beno Eckmann and Peter Hilton, who used it in a 1962 paper.

In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.

In mathematics, the simplex category is the category of non-empty finite ordinals and order-preserving maps. It is used to define simplicial and cosimplicial objects.

In mathematics, homotopical algebra is a collection of concepts comprising the nonabelian aspects of homological algebra, and possibly the abelian aspects as special cases. The homotopical nomenclature stems from the fact that a common approach to such generalizations is via abstract homotopy theory, as in nonabelian algebraic topology, and in particular the theory of closed model categories.

In mathematics, in particular homotopy theory, a continuous mapping between topological spaces

In mathematics, specifically in homotopy theory in the context of a model category M, a fibrant objectA of M is an object that has a fibration to the terminal object of the category.

In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes. The concept was introduced by Daniel G. Quillen.

In category theory, a discipline within mathematics, the nerveN(C) of a small category C is a simplicial set constructed from the objects and morphisms of C. The geometric realization of this simplicial set is a topological space, called the classifying space of the categoryC. These closely related objects can provide information about some familiar and useful categories using algebraic topology, most often homotopy theory.

In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan.

In mathematics, more specifically category theory, a quasi-category is a generalization of the notion of a category. The study of such generalizations is known as higher category theory.

In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence states that there is an equivalence between the category of chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the th homology group of a chain complex is the th homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy. The correspondence is an example of the nerve and realization paradigm.

In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site taking values in simplicial sets. Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.

In algebra, a simplicial commutative ring is a commutative monoid in the category of simplicial abelian groups, or, equivalently, a simplicial object in the category of commutative rings. If A is a simplicial commutative ring, then it can be shown that is a ring and are modules over that ring

Pursuing Stacks is an influential 1983 mathematical manuscript by Alexander Grothendieck. It consists of a 12-page letter to Daniel Quillen followed by about 600 pages of research notes.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline.

References

  1. PaulGoerssand Rick Jardine  ( 1999 ,Ch 3. Proposition 2.20)