Projective object

Last updated

In category theory, the notion of a projective object generalizes the notion of a projective module. Projective objects in abelian categories are used in homological algebra. The dual notion of a projective object is that of an injective object.

Contents

Definition

An object in a category is projective if for any epimorphism and morphism , there is a morphism such that , i.e. the following diagram commutes:

Projective object.svg

That is, every morphism factors through every epimorphism . [1]

If C is locally small, i.e., in particular is a set for any object X in C, this definition is equivalent to the condition that the hom functor (also known as corepresentable functor)

preserves epimorphisms. [2]

Projective objects in abelian categories

If the category C is an abelian category such as, for example, the category of abelian groups, then P is projective if and only if

is an exact functor, where Ab is the category of abelian groups.

An abelian category is said to have enough projectives if, for every object of , there is a projective object of and an epimorphism from P to A or, equivalently, a short exact sequence

The purpose of this definition is to ensure that any object A admits a projective resolution, i.e., a (long) exact sequence

where the objects are projective.

Projectivity with respect to restricted classes

Semadeni (1963) discusses the notion of projective (and dually injective) objects relative to a so-called bicategory, which consists of a pair of subcategories of "injections" and "surjections" in the given category C. These subcategories are subject to certain formal properties including the requirement that any surjection is an epimorphism. A projective object (relative to the fixed class of surjections) is then an object P so that Hom(P, ) turns the fixed class of surjections (as opposed to all epimorphisms) into surjections of sets (in the usual sense).

Properties

Examples

The statement that all sets are projective is equivalent to the axiom of choice.

The projective objects in the category of abelian groups are the free abelian groups.

Let be a ring with identity. Consider the (abelian) category -Mod of left -modules. The projective objects in -Mod are precisely the projective left R-modules. Consequently, is itself a projective object in -Mod. Dually, the injective objects in -Mod are exactly the injective left R-modules.

The category of left (right) -modules also has enough projectives. This is true since, for every left (right) -module , we can take to be the free (and hence projective) -module generated by a generating set for (for example we can take to be ). Then the canonical projection is the required surjection.

The projective objects in the category of compact Hausdorff spaces are precisely the extremally disconnected spaces. This result is due to Gleason (1958), with a simplified proof given by Rainwater (1959).

In the category of Banach spaces and contractions (i.e., functionals whose norm is at most 1), the epimorphisms are precisely the maps with dense image. Wiweger (1969) shows that the zero space is the only projective object in this category. There are non-trivial spaces, though, which are projective with respect to the class of surjective contractions. In the category of normed vector spaces with contractions (and surjective maps as "surjections"), the projective objects are precisely the -spaces. [5]

Related Research Articles

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.

In category theory, an epimorphism is a morphism f : XY that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: YZ,

<span class="mw-page-title-main">Exact sequence</span> Sequence of homomorphisms such that each kernel equals the preceding image

An exact sequence is a sequence of morphisms between objects such that the image of one morphism equals the kernel of the next.

<span class="mw-page-title-main">Homological algebra</span> Branch of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about abelian categories; it essentially states that these categories, while rather abstractly defined, are in fact concrete categories of modules. This allows one to use element-wise diagram chasing proofs in these categories. The theorem is named after Barry Mitchell and Peter Freyd.

In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of model categories. The dual notion is that of a projective object.

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In mathematics, especially in category theory, a closed monoidal category is a category that is both a monoidal category and a closed category in such a way that the structures are compatible.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, specifically in category theory, hom-sets give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics.

In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent if their categories of modules are additively equivalent. It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958.

In mathematics, and more specifically in homological algebra, a resolution is an exact sequence of modules that is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object or the rightmost object is the zero-object.

In mathematics, a Grothendieck category is a certain kind of abelian category, introduced in Alexander Grothendieck's Tôhoku paper of 1957 in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962.

In mathematics, specifically representation theory, tilting theory describes a way to relate the module categories of two algebras using so-called tilting modules and associated tilting functors. Here, the second algebra is the endomorphism algebra of a tilting module over the first algebra.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).

In mathematics, the quotient of an abelian category by a Serre subcategory is the abelian category which, intuitively, is obtained from by ignoring all objects from . There is a canonical exact functor whose kernel is , and is in a certain sense the most general abelian category with this property.

References

projective object at the nLab