Calculus of functors

Last updated

In algebraic topology, a branch of mathematics, the calculus of functors or Goodwillie calculus is a technique for studying functors by approximating them by a sequence of simpler functors; it generalizes the sheafification of a presheaf. This sequence of approximations is formally similar to the Taylor series of a smooth function, hence the term "calculus of functors".

Contents

Many objects of central interest in algebraic topology can be seen as functors, which are difficult to analyze directly, so the idea is to replace them with simpler functors which are sufficiently good approximations for certain purposes. The calculus of functors was developed by Thomas Goodwillie in a series of three papers in the 1990s and 2000s, [1] [2] [3] and has since been expanded and applied in a number of areas.

Examples

A motivational example, of central interest in geometric topology, is the functor of embeddings of one manifold M into another manifold N, whose first derivative in the sense of calculus of functors is the functor of immersions. As every embedding is an immersion, one obtains an inclusion of functors – in this case the map from a functor to an approximation is an inclusion, but in general it is simply a map.

As this example illustrates, the linear approximation of a functor (on a topological space) is its sheafification, thinking of the functor as a presheaf on the space (formally, as a functor on the category of open subsets of the space), and sheaves are the linear functors.

This example was studied by Goodwillie and Michael Weiss. [4] [5]

Definition

Here is an analogy: with the Taylor series method from calculus, you can approximate the shape of a smooth function f around a point x by using a sequence of increasingly accurate polynomial functions. In a similar way, with the calculus of functors method, you can approximate the behavior of certain kind of functorF at a particular object X by using a sequence of increasingly accurate polynomial functors.

To be specific, let M be a smooth manifold and let O(M) be the category of open subspaces of M, i.e., the category where the objects are the open subspaces of M, and the morphisms are inclusion maps. Let F be a contravariant functor from the category O(M) to the category Top of topological spaces with continuous morphisms. This kind of functor, called a Top-valued presheaf on M, is the kind of functor you can approximate using the calculus of functors method: for a particular open set X∈O(M), you may want to know what sort of a topological space F(X) is, so you can study the topology of the increasingly accurate approximations F0(X), F1(X), F2(X), and so on.

In the calculus of functors method, the sequence of approximations consists of (1) functors , and so on, as well as (2) natural transformations for each integer k. These natural transforms are required to be compatible, meaning that the composition equals the map and thus form a tower

and can be thought of as "successive approximations", just as in a Taylor series one can progressively discard higher order terms.

The approximating functors are required to be "k-excisive" – such functors are called polynomial functors by analogy with Taylor polynomials – which is a simplifying condition, and roughly means that they are determined by their behavior around k points at a time, or more formally are sheaves on the configuration space of k points in the given space. The difference between the kth and st functors is a "homogeneous functor of degree k" (by analogy with homogeneous polynomials), which can be classified.

For the functors to be approximations to the original functor F, the resulting approximation maps must be n-connected for some number n, meaning that the approximating functor approximates the original functor "in dimension up to n"; this may not occur. Further, if one wishes to reconstruct the original functor, the resulting approximations must be n-connected for n increasing to infinity. One then calls F an analytic functor, and says that "the Taylor tower converges to the functor", in analogy with Taylor series of an analytic function.

Branches

There are three branches of the calculus of functors, developed in the order:

Homotopy calculus has seen far wider application than the other branches.[ citation needed ]

History

The notion of a sheaf and sheafification of a presheaf date to early category theory, and can be seen as the linear form of the calculus of functors. The quadratic form can be seen in the work of André Haefliger on links of spheres in 1965, where he defined a "metastable range" in which the problem is simpler. [6] This was identified as the quadratic approximation to the embeddings functor in Goodwillie and Weiss.

Related Research Articles

In mathematics, specifically category theory, a functor is a map between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In algebra and algebraic geometry, the spectrum of a commutative ring R, denoted by , is the set of all prime ideals of R. It is commonly augmented with the Zariski topology and with a structure sheaf, turning it into a locally ringed space. A locally ringed space of this form is called an affine scheme.

In mathematics, an embedding is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.

Commutative ring Algebraic structure

In ring theory, a branch of abstract algebra, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of noncommutative rings where multiplication is not required to be commutative.

Homological algebra

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, to other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups associated to a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. The data can be restricted to smaller open sets, and the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original one. For example, such data can consist of the rings of continuous or smooth real-valued functions defined on each open set. Sheaves are by design quite general and abstract objects, and their correct definition is rather technical. They are variously defined, for example, as sheaves of sets or sheaves of rings, depending on the type of data assigned to open sets.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

Homotopy principle

In mathematics, the homotopy principle is a very general way to solve partial differential equations (PDEs), and more generally partial differential relations (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as occur in the immersion problem, isometric immersion problem, fluid dynamics, and other areas.

In mathematics, the gluing axiom is introduced to define what a sheaf on a topological space must satisfy, given that it is a presheaf, which is by definition a contravariant functor

Differentiable manifold Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

This is a glossary of properties and concepts in category theory in mathematics.

In category theory, a branch of mathematics, a presheaf on a category is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.

Immersion (mathematics)

In mathematics, an immersion is a differentiable function between differentiable manifolds whose derivative is everywhere injective. Explicitly, f : MN is an immersion if

In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.

In mathematics, assembly maps are an important concept in geometric topology. From the homotopy-theoretical viewpoint, an assembly map is a universal approximation of a homotopy invariant functor by a homology theory from the left. From the geometric viewpoint, assembly maps correspond to 'assemble' local data over a parameter space together to get global data.

Maps of manifolds

In mathematics, more specifically in differential geometry and topology, various types of functions between manifolds are studied, both as objects in their own right and for the light they shed

References

  1. T. Goodwillie, Calculus I: The first derivative of pseudoisotopy theory, K-theory 4 (1990), 1-27.
  2. T. Goodwillie, Calculus II: Analytic functors, K-theory 5 (1992), 295-332.
  3. T. Goodwillie, Calculus III: Taylor series, Geom. Topol. 7 (2003), 645-711.
  4. M. Weiss, Embeddings from the point of view of immersion theory, Part I, Geometry and Topology 3 (1999), 67-101.
  5. T. Goodwillie and M. Weiss, Embeddings from the point of view of immersion theory, Part II, Geometry and Topology 3 (1999), 103-118.
  6. Haefliger, André, Enlacements de sphères en codimension supérieure à 2