Pre-abelian category

Last updated

In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.

Contents

Spelled out in more detail, this means that a category C is pre-abelian if:

  1. C is preadditive, that is enriched over the monoidal category of abelian groups (equivalently, all hom-sets in C are abelian groups and composition of morphisms is bilinear);
  2. C has all finite products (equivalently, all finite coproducts); note that because C is also preadditive, finite products are the same as finite coproducts, making them biproducts;
  3. given any morphism f: A  B in C, the equaliser of f and the zero morphism from A to B exists (this is by definition the kernel of f), as does the coequaliser (this is by definition the cokernel of f).

Note that the zero morphism in item 3 can be identified as the identity element of the hom-set Hom(A,B), which is an abelian group by item 1; or as the unique morphism A → 0  B, where 0 is a zero object, guaranteed to exist by item 2.

Examples

The original example of an additive category is the category Ab of abelian groups. Ab is preadditive because it is a closed monoidal category, the biproduct in Ab is the finite direct sum, the kernel is inclusion of the ordinary kernel from group theory and the cokernel is the quotient map onto the ordinary cokernel from group theory.

Other common examples:

These will give you an idea of what to think of; for more examples, see abelian category (every abelian category is pre-abelian).

Elementary properties

Every pre-abelian category is of course an additive category, and many basic properties of these categories are described under that subject. This article concerns itself with the properties that hold specifically because of the existence of kernels and cokernels.

Although kernels and cokernels are special kinds of equalisers and coequalisers, a pre-abelian category actually has all equalisers and coequalisers. We simply construct the equaliser of two morphisms f and g as the kernel of their difference gf; similarly, their coequaliser is the cokernel of their difference. (The alternative term "difference kernel" for binary equalisers derives from this fact.) Since pre-abelian categories have all finite products and coproducts (the biproducts) and all binary equalisers and coequalisers (as just described), then by a general theorem of category theory, they have all finite limits and colimits. That is, pre-abelian categories are finitely complete.

The existence of both kernels and cokernels gives a notion of image and coimage. We can define these as

im f := kercoker f;
coim f := cokerker f.

That is, the image is the kernel of the cokernel, and the coimage is the cokernel of the kernel.

Note that this notion of image may not correspond to the usual notion of image, or range, of a function, even assuming that the morphisms in the category are functions. For example, in the category of topological abelian groups, the image of a morphism actually corresponds to the inclusion of the closure of the range of the function. For this reason, people will often distinguish the meanings of the two terms in this context, using "image" for the abstract categorical concept and "range" for the elementary set-theoretic concept.

In many common situations, such as the category of sets, where images and coimages exist, their objects are isomorphic. Put more precisely, we have a factorisation of f: A  B as

A C I B,

where the morphism on the left is the coimage, the morphism on the right is the image, and the morphism in the middle (called the parallel of f) is an isomorphism.

In a pre-abelian category, this is not necessarily true. The factorisation shown above does always exist, but the parallel might not be an isomorphism. In fact, the parallel of f is an isomorphism for every morphism f if and only if the pre-abelian category is an abelian category. An example of a non-abelian, pre-abelian category is, once again, the category of topological abelian groups. As remarked, the image is the inclusion of the closure of the range; however, the coimage is a quotient map onto the range itself. Thus, the parallel is the inclusion of the range into its closure, which is not an isomorphism unless the range was already closed.

Exact functors

Recall that all finite limits and colimits exist in a pre-abelian category. In general category theory, a functor is called left exact if it preserves all finite limits and right exact if it preserves all finite colimits. (A functor is simply exact if it's both left exact and right exact.)

In a pre-abelian category, exact functors can be described in particularly simple terms. First, recall that an additive functor is a functor F: C  D between preadditive categories that acts as a group homomorphism on each hom-set. Then it turns out that a functor between pre-abelian categories is left exact if and only if it is additive and preserves all kernels, and it's right exact if and only if it's additive and preserves all cokernels.

Note that an exact functor, because it preserves both kernels and cokernels, preserves all images and coimages. Exact functors are most useful in the study of abelian categories, where they can be applied to exact sequences.

Maximal exact structure

On every pre-abelian category there exists an exact structure that is maximal in the sense that it contains every other exact structure. The exact structure consists of precisely those kernel-cokernel pairs where is a semi-stable kernel and is a semi-stable cokernel. [1] Here, is a semi-stable kernel if it is a kernel and for each morphism in the pushout diagram

the morphism is again a kernel. is a semi-stable cokernel if it is a cokernel and for every morphism in the pullback diagram

the morphism is again a cokernel.

A pre-abelian category is quasi-abelian if and only if all kernel-cokernel pairs form an exact structure. An example for which this is not the case is the category of (Hausdorff) bornological spaces. [2]

The result is also valid for additive categories that are not pre-abelian but Karoubian. [3]

Special cases

The pre-abelian categories most commonly studied are in fact abelian categories; for example, Ab is an abelian category. Pre-abelian categories that are not abelian appear for instance in functional analysis.

Citations

  1. Sieg et al., 2011, p. 2096.
  2. Sieg et al., 2011, p. 2099.
  3. Crivei, 2012, p. 445.

Related Research Articles

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named after Niels Henrik Abel.

In mathematics, specifically category theory, adjunction is a relationship that two functors may have, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In mathematics, specifically in category theory, a preadditive category is another name for an Ab-category, i.e., a category that is enriched over the category of abelian groups, Ab. That is, an Ab-categoryC is a category such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas:

In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts.

Exact sequence Sequence of homomorphisms such that each kernel equals the preceding image

An exact sequence is a sequence of morphisms between objects such that the image of one morphism equals the kernel of the next.

Homological algebra Branch of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

The cokernel of a linear mapping of vector spaces f : XY is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f.

The following outline is provided as an overview of and guide to category theory, the area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of objects and arrows, where these collections satisfy certain basic conditions. Many significant areas of mathematics can be formalised as categories, and the use of category theory allows many intricate and subtle mathematical results in these fields to be stated, and proved, in a much simpler way than without the use of categories.

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab.

Category of groups

In mathematics, the category Grp has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory.

In mathematics, a comma category is a construction in category theory. It provides another way of looking at morphisms: instead of simply relating objects of a category to one another, morphisms become objects in their own right. This notion was introduced in 1963 by F. W. Lawvere, although the technique did not become generally known until many years later. Several mathematical concepts can be treated as comma categories. Comma categories also guarantee the existence of some limits and colimits. The name comes from the notation originally used by Lawvere, which involved the comma punctuation mark. The name persists even though standard notation has changed, since the use of a comma as an operator is potentially confusing, and even Lawvere dislikes the uninformative term "comma category".

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described by complicated spectral sequences.

In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology.

In category theory, a regular category is a category with finite limits and coequalizers of a pair of morphisms called kernel pairs, satisfying certain exactness conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of images, without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic.

In mathematics, specifically in category theory, a pseudo-abelian category is a category that is preadditive and is such that every idempotent has a kernel . Recall that an idempotent morphism is an endomorphism of an object with the property that . Elementary considerations show that every idempotent then has a cokernel. The pseudo-abelian condition is stronger than preadditivity, but it is weaker than the requirement that every morphism have a kernel and cokernel, as is true for abelian categories.

In mathematics, specifically in category theory, a quasi-abelian category is a pre-abelian category in which the pushout of a kernel along arbitrary morphisms is again a kernel and, dually, the pullback of a cokernel along arbitrary morphisms is again a cokernel.

In mathematics, specifically in category theory, a semi-abelian category is a pre-abelian category in which the induced morphism is a bimorphism, i.e., a monomorphism and an epimorphism, for every morphism .

In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences to the category of abelian groups.

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

References