This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(June 2022) |
In mathematics, specifically in category theory, a preadditive category is another name for an Ab-category, i.e., a category that is enriched over the category of abelian groups, Ab. That is, an Ab-categoryC is a category such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas: and where + is the group operation.
Some authors have used the term additive category for preadditive categories, but this page reserves this term for certain special preadditive categories (see § Special cases below).
The most obvious example of a preadditive category is the category Ab itself. More precisely, Ab is a closed monoidal category. Note that commutativity is crucial here; it ensures that the sum of two group homomorphisms is again a homomorphism. In contrast, the category of all groups is not closed. See Medial category.
Other common examples:
These will give you an idea of what to think of; for more examples, follow the links to § Special cases below.
Because every hom-set Hom(A,B) is an abelian group, it has a zero element 0. This is the zero morphism from A to B. Because composition of morphisms is bilinear, the composition of a zero morphism and any other morphism (on either side) must be another zero morphism. If you think of composition as analogous to multiplication, then this says that multiplication by zero always results in a product of zero, which is a familiar intuition. Extending this analogy, the fact that composition is bilinear in general becomes the distributivity of multiplication over addition.
Focusing on a single object A in a preadditive category, these facts say that the endomorphism hom-set Hom(A,A) is a ring, if we define multiplication in the ring to be composition. This ring is the endomorphism ring of A. Conversely, every ring (with identity) is the endomorphism ring of some object in some preadditive category. Indeed, given a ring R, we can define a preadditive category R to have a single object A, let Hom(A,A) be R, and let composition be ring multiplication. Since R is an abelian group and multiplication in a ring is bilinear (distributive), this makes R a preadditive category. Category theorists will often think of the ring R and the category R as two different representations of the same thing, so that a particularly perverse category theorist might define a ring as a preadditive category with exactly one object (in the same way that a monoid can be viewed as a category with only one object—and forgetting the additive structure of the ring gives us a monoid).
In this way, preadditive categories can be seen as a generalisation of rings. Many concepts from ring theory, such as ideals, Jacobson radicals, and factor rings can be generalized in a straightforward manner to this setting. When attempting to write down these generalizations, one should think of the morphisms in the preadditive category as the "elements" of the "generalized ring".
If and are preadditive categories, then a functor is additive if it too is enriched over the category . That is, is additive if and only if, given any objects and of , the function is a group homomorphism. Most functors studied between preadditive categories are additive.
For a simple example, if the rings and are represented by the one-object preadditive categories and , then a ring homomorphism from to is represented by an additive functor from to , and conversely.
If and are categories and is preadditive, then the functor category is also preadditive, because natural transformations can be added in a natural way. If is preadditive too, then the category of additive functors and all natural transformations between them is also preadditive.
The latter example leads to a generalization of modules over rings: If is a preadditive category, then is called the module category over .[ citation needed ] When is the one-object preadditive category corresponding to the ring , this reduces to the ordinary category of (left) -modules. Again, virtually all concepts from the theory of modules can be generalised to this setting.
More generally, one can consider a category C enriched over the monoidal category of modules over a commutative ring R, called an R-linear category. In other words, each hom-set in C has the structure of an R-module, and composition of morphisms is R-bilinear.
When considering functors between two R-linear categories, one often restricts to those that are R-linear, so those that induce R-linear maps on each hom-set.
Any finite product in a preadditive category must also be a coproduct, and conversely. In fact, finite products and coproducts in preadditive categories can be characterised by the following biproduct condition:
This biproduct is often written A1 ⊕ ··· ⊕ An, borrowing the notation for the direct sum. This is because the biproduct in well known preadditive categories like Abis the direct sum. However, although infinite direct sums make sense in some categories, like Ab, infinite biproducts do not make sense (see Category of abelian groups § Properties).
The biproduct condition in the case n = 0 simplifies drastically; B is a nullary biproduct if and only if the identity morphism of B is the zero morphism from B to itself, or equivalently if the hom-set Hom(B,B) is the trivial ring. Note that because a nullary biproduct will be both terminal (a nullary product) and initial (a nullary coproduct), it will in fact be a zero object . Indeed, the term "zero object" originated in the study of preadditive categories like Ab, where the zero object is the zero group.
A preadditive category in which every biproduct exists (including a zero object) is called additive . Further facts about biproducts that are mainly useful in the context of additive categories may be found under that subject.
Because the hom-sets in a preadditive category have zero morphisms, the notion of kernel and cokernel make sense. That is, if f: A → B is a morphism in a preadditive category, then the kernel of f is the equaliser of f and the zero morphism from A to B, while the cokernel of f is the coequaliser of f and this zero morphism. Unlike with products and coproducts, the kernel and cokernel of f are generally not equal in a preadditive category.
When specializing to the preadditive categories of abelian groups or modules over a ring, this notion of kernel coincides with the ordinary notion of a kernel of a homomorphism, if one identifies the ordinary kernel K of f: A → B with its embedding K → A. However, in a general preadditive category there may exist morphisms without kernels and/or cokernels.
There is a convenient relationship between the kernel and cokernel and the abelian group structure on the hom-sets. Given parallel morphisms f and g, the equaliser of f and g is just the kernel of g − f, if either exists, and the analogous fact is true for coequalisers. The alternative term "difference kernel" for binary equalisers derives from this fact.
A preadditive category in which all biproducts, kernels, and cokernels exist is called pre-abelian . Further facts about kernels and cokernels in preadditive categories that are mainly useful in the context of pre-abelian categories may be found under that subject.
Most of these special cases of preadditive categories have all been mentioned above, but they're gathered here for reference.
The preadditive categories most commonly studied are in fact abelian categories; for example, Ab is an abelian category.
In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory. It allows the embedding of any locally small category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.
In category theory, an epimorphism is a morphism f : X → Y that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: Y → Z,
In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide for finite collections of objects. The biproduct is a generalization of finite direct sums of modules.
In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts.
In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.
An exact sequence is a sequence of morphisms between objects such that the image of one morphism equals the kernel of the next.
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.
In category theory, a branch of mathematics, a functor category is a category where the objects are the functors and the morphisms are natural transformations between the functors. Functor categories are of interest for two main reasons:
Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about abelian categories; it essentially states that these categories, while rather abstractly defined, are in fact concrete categories of modules. This allows one to use element-wise diagram chasing proofs in these categories. The theorem is named after Barry Mitchell and Peter Freyd.
In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab.
In mathematics, the category Grp has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory.
This is a glossary of properties and concepts in category theory in mathematics.
In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings and whose morphisms are ring homomorphisms. Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.
In mathematics, specifically in category theory, a pseudo-abelian category is a category that is preadditive and is such that every idempotent has a kernel. Recall that an idempotent morphism is an endomorphism of an object with the property that . Elementary considerations show that every idempotent then has a cokernel. The pseudo-abelian condition is stronger than preadditivity, but it is weaker than the requirement that every morphism have a kernel and cokernel, as is true for abelian categories.
Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.
In mathematics, the quotient of an abelian category by a Serre subcategory is the abelian category which, intuitively, is obtained from by ignoring all objects from . There is a canonical exact functor whose kernel is , and is in a certain sense the most general abelian category with this property.