Weak n-category

Last updated

In category theory, a weak n-category is a generalization of the notion of strict n-category where composition and identities are not strictly associative and unital, but only associative and unital up to coherent equivalence. This generalisation only becomes noticeable at dimensions two and above where weak 2-, 3- and 4-categories are typically referred to as bicategories, tricategories, and tetracategories. The subject of weak n-categories is an area of ongoing research.

Contents

History

There is currently[ when? ] much work to determine what the coherence laws for weak n-categories should be. Weak n-categories have become the main object of study in higher category theory. There are basically two classes of theories: those in which the higher cells and higher compositions are realized algebraically (most remarkably Michael Batanin's theory of weak higher categories) and those in which more topological models are used (e.g. a higher category as a simplicial set satisfying some universality properties).

In a terminology due to John Baez and James Dolan, a (n, k)-category is a weak n-category, such that all h-cells for h > k are invertible. Some of the formalism for (n, k)-categories are much simpler than those for general n-categories. In particular, several technically accessible formalisms of (infinity,1)-categories are now known. Now the most popular such formalism centers on a notion of quasi-category, other approaches include a properly understood theory of simplicially enriched categories and the approach via Segal categories; a class of examples of stable(infinity,1)-categories can be modeled (in the case of characteristics zero) also via pretriangulated A-infinity categories of Maxim Kontsevich. Quillen model categories are viewed as a presentation of an (infinity,1)-category; however not all (infinity,1)-categories can be presented via model categories.

See also

Related Research Articles

Category theory Formalization of the concept of mathematical structure

Category theory formalizes mathematical structure and its concepts in terms of a labeled directed graph called a category, whose nodes are called objects, and whose labelled directed edges are called arrows. A category has two basic properties: the ability to compose the arrows associatively, and the existence of an identity arrow for each object. The language of category theory has been used to formalize concepts of other high-level abstractions such as sets, rings, and groups. Informally, category theory is a general theory of functions.

In mathematics, a bicategory is a concept in category theory used to extend the notion of category to handle the cases where the composition of morphisms is not (strictly) associative, but only associative up to an isomorphism. The notion was introduced in 1967 by Jean Bénabou.

In mathematics, categorification is the process of replacing set-theoretic theorems with category-theoretic analogues. Categorification, when done successfully, replaces sets with categories, functions with functors, and equations with natural isomorphisms of functors satisfying additional properties. The term was coined by Louis Crane.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, a tricategory is a kind of structure of category theory studied in higher-dimensional category theory.

In category theory, a strict 2-category is a category with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category enriched over Cat.

In category theory, a discipline within mathematics, the nerveN(C) of a small category C is a simplicial set constructed from the objects and morphisms of C. The geometric realization of this simplicial set is a topological space, called the classifying space of the categoryC. These closely related objects can provide information about some familiar and useful categories using algebraic topology, most often homotopy theory.

In mathematics, higher category theory is the part of category theory at a higher order, which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology, where one studies algebraic invariants of spaces, such as their fundamental weak ∞-groupoid.

In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.

In mathematics, especially (higher) category theory, higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra.

In mathematics, a 2-group, or 2-dimensional higher group, is a certain combination of group and groupoid. The 2-groups are part of a larger hierarchy of n-groups. In some of the literature, 2-groups are also called gr-categories or groupal groupoids.

In mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory.

In mathematics, more specifically category theory, a quasi-category is a generalization of the notion of a category. The study of such generalizations is known as higher category theory.

In category theory, a discipline in mathematics, the notion of topological category has a number of different, inequivalent definitions.

In mathematics, a simplicially enriched category, is a category enriched over the category of simplicial sets. Simplicially enriched categories are often also called, more ambiguously, simplicial categories; the latter term however also applies to simplicial objects in Cat. Simplicially enriched categories can, however, be identified with simplicial objects in Cat whose object part is constant, or more precisely, whose all face and degeneracy maps are bijective on objects. Simplicially enriched categories can model -categories, but the dictionary has to be carefully built. Namely many notions, limits for example, are different from the limits in the sense of enriched category theory.

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

In algebraic K-theory, the K-theory of a categoryC is a sequence of abelian groups Ki(C) associated to it. If C is an abelian category, there is no need for extra data, but in general it only makes sense to speak of K-theory after specifying on C a structure of an exact category, or of a Waldhausen category, or of a dg-category, or possibly some other variants. Thus, there are several constructions of those groups, corresponding to various kinds of structures put on C. Traditionally, the K-theory of C is defined to be the result of a suitable construction, but in some contexts there are more conceptual definitions. For instance, the K-theory is a 'universal additive invariant' of dg-categories and small stable ∞-categories.

In category theory, a branch of mathematics, an opetope, a portmanteau of "operation" and "polytope", is a shape that captures higher-dimensional substitutions. It was introduced by John C. Baez and James Dolan so that they could define a weak n-category as a certain presheaf on the category of opetopes.

Applied category theory is an academic discipline in which methods from category theory are used to study other fields including but not limited to computer science, physics, natural language processing, control theory, probability theory and causality. The application of category theory in these domains can take different forms. In some cases the formalization of the domain into the language of category theory is the goal, the idea here being that this would elucidate the important structure and properties of the domain. In other cases the formalization is used to leverage the power of abstraction in order to prove new results about the field.