# Opposite category

Last updated

In category theory, a branch of mathematics, the opposite category or dual categoryCop of a given category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself. In symbols, $(C^{\text{op}})^{\text{op}}=C$ .

## Examples

• An example comes from reversing the direction of inequalities in a partial order. So if X is a set and ≤ a partial order relation, we can define a new partial order relation ≤op by
xopy if and only if yx.
The new order is commonly called dual order of ≤, and is mostly denoted by ≥. Therefore, duality plays an important role in order theory and every purely order theoretic concept has a dual. For example, there are opposite pairs child/parent, descendant/ancestor, infimum/supremum, down-set/up-set, ideal/filter etc. This order theoretic duality is in turn a special case of the construction of opposite categories as every ordered set can be understood as a category.

## Properties

Opposite preserves products:

$(C\times D)^{\text{op}}\cong C^{\text{op}}\times D^{\text{op}}$ (see product category)

Opposite preserves functors:

$(\mathrm {Funct} (C,D))^{\text{op}}\cong \mathrm {Funct} (C^{\text{op}},D^{\text{op}})$ (see functor category, opposite functor)

Opposite preserves slices:

$(F\downarrow G)^{\text{op}}\cong (G^{\text{op}}\downarrow F^{\text{op}})$ (see comma category)

## Related Research Articles In mathematics, an associative algebra is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

In mathematics, specifically category theory, a functor is a map between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

In mathematics, the inverse limit is a construction that allows one to "glue together" several related objects, the precise manner of the gluing process being specified by morphisms between the objects. Inverse limits can be defined in any category, and they are a special case of the concept of a limit in category theory. In abstract algebra, a branch of mathematics, a monoid is an algebraic structure with a single associative binary operation and an identity element. In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation.

In mathematics, the Yoneda lemma is arguably the most important result in category theory. It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory. It allows the embedding of any category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications.

In mathematics, specifically category theory, adjunction is a relationship that two functors may have. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In abstract algebra, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ringX, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.

In mathematics, more specifically in abstract algebra and universal algebra, an algebraic structure consists of a nonempty set A, a collection of operations on A of finite arity, and a finite set of identities, known as axioms, that these operations must satisfy. Some algebraic structures also involve another set.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups associated to a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, an antihomomorphism is a type of function defined on sets with multiplication that reverses the order of multiplication. An antiautomorphism is a bijective antihomomorphism, i.e. an antiisomorphism, from a set to itself. From bijectivity it follows that antiautomorphisms have inverses, and that the inverse of an antiautomorphism is also an antiautomorphism.

In mathematics, a join-semilattice is a partially ordered set that has a join for any nonempty finite subset. Dually, a meet-semilattice is a partially ordered set which has a meet for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.

In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In mathematics, the Grothendieck group construction constructs an abelian group from a commutative monoid M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation. In mathematics, specifically in category theory, F-algebras generalize the notion of algebraic structure. Rewriting the algebraic laws in terms of morphisms eliminates all references to quantified elements from the axioms, and these algebraic laws may then be glued together in terms of a single functor F, the signature.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, a full subcategory A of a category B is said to be reflective in B when the inclusion functor from A to B has a left adjoint. This adjoint is sometimes called a reflector, or localization. Dually, A is said to be coreflective in B when the inclusion functor has a right adjoint.

In mathematics, a refinement monoid is a commutative monoid M such that for any elements a0, a1, b0, b1 of M such that a0+a1=b0+b1, there are elements c00, c01, c10, c11 of M such that a0=c00+c01, a1=c10+c11, b0=c00+c10, and b1=c01+c11.

1. "Is there an introduction to probability theory from a structuralist/categorical perspective?". MathOverflow. Retrieved 25 October 2010.
2. H. Herrlich, G. E. Strecker, Category Theory, 3rd Edition, Heldermann Verlag, ISBN   978-3-88538-001-6, p. 99.
3. O. Wyler, Lecture Notes on Topoi and Quasitopoi, World Scientific, 1991, p. 8.