Dual object

Last updated

In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V doesn't satisfy the axioms. [1] Often, an object is dualizable only when it satisfies some finiteness or compactness property. [2]

Contents

A category in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the category of all vector spaces is not.

Motivation

Let V be a finite-dimensional vector space over some field K. The standard notion of a dual vector space V has the following property: for any K-vector spaces U and W there is an adjunction HomK(UV,W) = HomK(U, VW), and this characterizes V up to a unique isomorphism. This expression makes sense in any category with an appropriate replacement for the tensor product of vector spaces. For any monoidal category (C, ⊗) one may attempt to define a dual of an object V to be an object VC with a natural isomorphism of bifunctors

HomC((–)1V, (–)2) → HomC((–)1, V ⊗ (–)2)

For a well-behaved notion of duality, this map should be not only natural in the sense of category theory, but also respect the monoidal structure in some way. [1] An actual definition of a dual object is thus more complicated.

In a closed monoidal category C, i.e. a monoidal category with an internal Hom functor, an alternative approach is to simulate the standard definition of a dual vector space as a space of functionals. For an object VC define V to be , where 1C is the monoidal identity. In some cases, this object will be a dual object to V in a sense above, but in general it leads to a different theory. [3]

Definition

Consider an object in a monoidal category . The object is called a left dual of if there exist two morphisms

, called the coevaluation, and , called the evaluation,

such that the following two diagrams commute:

Dual-one.png and Dual-two.png

The object is called the right dual of . This definition is due to Dold & Puppe (1980).

Left duals are canonically isomorphic when they exist, as are right duals. When C is braided (or symmetric), every left dual is also a right dual, and vice versa.

If we consider a monoidal category as a bicategory with one object, a dual pair is exactly an adjoint pair.

Examples

Categories with duals

A monoidal category where every object has a left (respectively right) dual is sometimes called a left (respectively right) autonomous category. Algebraic geometers call it a left (respectively right) rigid category . A monoidal category where every object has both a left and a right dual is called an autonomous category . An autonomous category that is also symmetric is called a compact closed category .

Traces

Any endomorphism f of a dualizable object admits a trace, which is a certain endomorphism of the monoidal unit of C. This notion includes, as very special cases, the trace in linear algebra and the Euler characteristic of a chain complex.

See also

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Algebraic structure with (a + b)(c + d) = ac + ad + bc + bd and (a)(bc) = (ab)(c)

In mathematics, an associative algebraA is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

<span class="mw-page-title-main">Tensor</span> Algebraic object with geometric applications

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system; those components form an array, which can be thought of as a high-dimensional matrix.

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory.

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

In mathematics, a monoidal category is a category equipped with a bifunctor

In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much of the work in homological algebra is designed to cope with functors that fail to be exact, but in ways that can still be controlled.

In mathematics, especially in category theory, a closed monoidal category is a category that is both a monoidal category and a closed category in such a way that the structures are compatible.

In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, Tannaka–Krein duality theory concerns the interaction of a compact topological group and its category of linear representations. It is a natural extension of Pontryagin duality, between compact and discrete commutative topological groups, to groups that are compact but noncommutative. The theory is named after Tadao Tannaka and Mark Grigorievich Krein. In contrast to the case of commutative groups considered by Lev Pontryagin, the notion dual to a noncommutative compact group is not a group, but a category of representations Π(G) with some additional structure, formed by the finite-dimensional representations of G.

In mathematics, a super vector space is a -graded vector space, that is, a vector space over a field with a given decomposition of subspaces of grade and grade . The study of super vector spaces and their generalizations is sometimes called super linear algebra. These objects find their principal application in theoretical physics where they are used to describe the various algebraic aspects of supersymmetry.

In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category such that the tensor product is symmetric. One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field k, using the ordinary tensor product of vector spaces.

In mathematics, a *-autonomous category C is a symmetric monoidal closed category equipped with a dualizing object . The concept is also referred to as Grothendieck—Verdier category in view of its relation to the notion of Verdier duality.

In category theory, a branch of mathematics, dagger compact categories first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations. They also appeared in the work of John Baez and James Dolan as an instance of semistrict k-tuply monoidal n-categories, which describe general topological quantum field theories, for n = 1 and k = 3. They are a fundamental structure in Samson Abramsky and Bob Coecke's categorical quantum mechanics.

In category theory, a branch of mathematics, a rigid category is a monoidal category where every object is rigid, that is, has a dual X* and a morphism 1XX* satisfying natural conditions. The category is called right rigid or left rigid according to whether it has right duals or left duals. They were first defined by Neantro Saavedra Rivano in his thesis on Tannakian categories.

In mathematics, a ribbon category, also called a tortile category, is a particular type of braided monoidal category.

In mathematics, compact objects, also referred to as finitely presented objects, or objects of finite presentation, are objects in a category satisfying a certain finiteness condition.

In category theory, a branch of mathematics, the categorical trace is a generalization of the trace of a matrix.

References

  1. 1 2 3 Ponto, Kate; Shulman, Michael (2014). "Traces in symmetric monoidal categories". Expositiones Mathematicae . 32 (3): 248–273. arXiv: 1107.6032 . Bibcode:2011arXiv1107.6032P. doi: 10.1016/j.exmath.2013.12.003 .
  2. Becker, James C.; Gottlieb, Daniel Henry (1999). "A history of duality in algebraic topology" (PDF). In James, I.M. (ed.). History of topology. North Holland. pp. 725–745. ISBN   978-0-444-82375-5.
  3. dual object in a closed category at the nLab
  4. See for example Nikshych, D.; Etingof, P.I.; Gelaki, S.; Ostrik, V. (2016). "Exercise 2.10.4". Tensor Categories. Mathematical Surveys and Monographs. Vol. 205. American Mathematical Society. p. 41. ISBN   978-1-4704-3441-0.