Compact closed category

Last updated

In category theory, a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the category having finite-dimensional vector spaces as objects and linear maps as morphisms, with tensor product as the monoidal structure. Another example is Rel, the category having sets as objects and relations as morphisms, with Cartesian monoidal structure.

Contents

Symmetric compact closed category

A symmetric monoidal category is compact closed if every object has a dual object. If this holds, the dual object is unique up to canonical isomorphism, and is denoted .

In a bit more detail, an object is called the dual of if it is equipped with two morphisms called the unit and the counit, satisfying the equations

and

where are the introduction of the unit on the left and right, respectively, and is the associator.

For clarity, we rewrite the above compositions diagrammatically. In order for to be compact closed, we need the following composites to equal :

and :

Definition

More generally, suppose is a monoidal category, not necessarily symmetric, such as in the case of a pregroup grammar. The above notion of having a dual for each object A is replaced by that of having both a left and a right adjoint, and , with a corresponding left unit , right unit , left counit , and right counit . These must satisfy the four yanking conditions, each of which are identities:

and

That is, in the general case, a compact closed category is both left and right-rigid, and biclosed.

Non-symmetric compact closed categories find applications in linguistics, in the area of categorial grammars and specifically in pregroup grammars, where the distinct left and right adjoints are required to capture word-order in sentences. In this context, compact closed monoidal categories are called (Lambek) pregroups .

Properties

Compact closed categories are a special case of monoidal closed categories, which in turn are a special case of closed categories.

Compact closed categories are precisely the symmetric autonomous categories. They are also *-autonomous.

Every compact closed category C admits a trace. Namely, for every morphism , one can define

which can be shown to be a proper trace. It helps to draw this diagrammatically:

Examples

The canonical example is the category FdVect with finite-dimensional vector spaces as objects and linear maps as morphisms. Here is the usual dual of the vector space .

The category of finite-dimensional representations of any group is also compact closed.

The category Vect, with all vector spaces as objects and linear maps as morphisms, is not compact closed; it is symmetric monoidal closed.

Simplex category

The simplex category can be used to construct an example of non-symmetric compact closed category. The simplex category is the category of non-zero finite ordinals (viewed as totally ordered sets); its morphisms are order-preserving (monotone) maps. We make it into a monoidal category by moving to the arrow category, so the objects are morphisms of the original category, and the morphisms are commuting squares. Then the tensor product of the arrow category is the original composition operator. The left and right adjoints are the min and max operators; specifically, for a monotone map f one has the right adjoint

and the left adjoint

The left and right units and counits are:

One of the yanking conditions is then

The others follow similarly. The correspondence can be made clearer by writing the arrow instead of , and using for function composition .

Dagger compact category

A dagger symmetric monoidal category which is compact closed is a dagger compact category.

Rigid category

A monoidal category that is not symmetric, but otherwise obeys the duality axioms above, is known as a rigid category. A monoidal category where every object has a left (resp. right) dual is also sometimes called a left (resp. right) autonomous category. A monoidal category where every object has both a left and a right dual is sometimes called an autonomous category. An autonomous category that is also symmetric is then a compact closed category.

Related Research Articles

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In mathematics, coalgebras or cogebras are structures that are dual to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions.

In mathematics, a bialgebra over a field K is a vector space over K which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

In mathematics, a monoidal category is a category equipped with a bifunctor

In category theory, a branch of mathematics, a monad is a monoid in the category of endofunctors. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories. Monads are also useful in the theory of datatypes, the denotational semantics of imperative programming languages, and in functional programming languages, allowing languages with non-mutable states to do things such as simulate for-loops; see Monad.

In mathematics, the tensor algebra of a vector space V, denoted T(V) or T(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below).

In mathematics, especially in category theory, a closed monoidal category is a category that is both a monoidal category and a closed category in such a way that the structures are compatible.

In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.

In category theory, a Kleisli category is a category naturally associated to any monad T. It is equivalent to the category of free T-algebras. The Kleisli category is one of two extremal solutions to the question Does every monad arise from an adjunction? The other extremal solution is the Eilenberg–Moore category. Kleisli categories are named for the mathematician Heinrich Kleisli.

String diagrams are a formal graphical language for representing morphisms in monoidal categories, or more generally 2-cells in 2-categories. They are a prominent tool in applied category theory. When interpreted in the monoidal category of vector spaces and linear maps with the tensor product, string diagrams are called tensor networks or Penrose graphical notation. This has led to the development of categorical quantum mechanics where the axioms of quantum theory are expressed in the language of monoidal categories.

In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors

Suppose that and are two monoidal categories. A monoidal adjunction between two lax monoidal functors

In category theory, a branch of mathematics, dagger compact categories first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations. They also appeared in the work of John Baez and James Dolan as an instance of semistrict k-tuply monoidal n-categories, which describe general topological quantum field theories, for n = 1 and k = 3. They are a fundamental structure in Samson Abramsky and Bob Coecke's categorical quantum mechanics.

In mathematics, a braided Hopf algebra is a Hopf algebra in a braided monoidal category. The most common braided Hopf algebras are objects in a Yetter–Drinfeld category of a Hopf algebra H, particularly the Nichols algebra of a braided vector space in that category.

In mathematics, the tensor-hom adjunction is that the tensor product and hom-functor form an adjoint pair:

In category theory, a branch of mathematics, a rigid category is a monoidal category where every object is rigid, that is, has a dual X* and a morphism 1XX* satisfying natural conditions. The category is called right rigid or left rigid according to whether it has right duals or left duals. They were first defined by Neantro Saavedra Rivano in his thesis on Tannakian categories.

In mathematics, in the theory of Hopf algebras, a Hopf algebroid is a generalisation of weak Hopf algebras, certain skew Hopf algebras and commutative Hopf k-algebroids. If k is a field, a commutative k-algebroid is a cogroupoid object in the category of k-algebras; the category of such is hence dual to the category of groupoid k-schemes. This commutative version has been used in 1970-s in algebraic geometry and stable homotopy theory. The generalization of Hopf algebroids and its main part of the structure, associative bialgebroids, to the noncommutative base algebra was introduced by J.-H. Lu in 1996 as a result on work on groupoids in Poisson geometry. They may be loosely thought of as Hopf algebras over a noncommutative base ring, where weak Hopf algebras become Hopf algebras over a separable algebra. It is a theorem that a Hopf algebroid satisfying a finite projectivity condition over a separable algebra is a weak Hopf algebra, and conversely a weak Hopf algebra H is a Hopf algebroid over its separable subalgebra HL. The antipode axioms have been changed by G. Böhm and K. Szlachányi in 2004 for tensor categorical reasons and to accommodate examples associated to depth two Frobenius algebra extensions.

In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras.

References

Kelly, G.M.; Laplaza, M.L. (1980). "Coherence for compact closed categories". Journal of Pure and Applied Algebra. 19: 193–213. doi: 10.1016/0022-4049(80)90101-2 .