This article needs additional citations for verification . (January 2017) (Learn how and when to remove this template message) |
In mathematics, specifically in the field known as category theory, a monoidal category where the monoidal ("tensor") product is the categorical product is called a cartesian monoidal category. Any category with finite products (a "finite product category") can be thought of as a cartesian monoidal category. In any cartesian monoidal category, the terminal object is the tensor unit. Dually, a monoidal finite coproduct category with the monoidal structure given by the coproduct and unit the initial object is called a cocartesian monoidal category, and any finite coproduct category can be thought of as a cocartesian monoidal category.
Cartesian categories with an internal Hom functor that is an adjoint functor to the product are called Cartesian closed categories. [1]
Cartesian monoidal categories have a number of special and important properties, such as the existence of diagonal maps Δx : x → x ⊗ x and augmentations ex : x → I for any object x. In applications to computer science we can think of Δ as "duplicating data" and e as "deleting data". These maps make any object into a comonoid. In fact, any object in a cartesian monoidal category becomes a comonoid in a unique way.
Cartesian monoidal categories:
Cocartesian monoidal categories:
In each of these categories of modules equipped with a cocartesian monoidal structure, finite products and coproducts coincide (in the sense that the product and coproduct of finitely many objects are isomorphic). Or more formally, if f : X1 ∐ ... ∐ Xn → X1 × ... × Xn is the "canonical" map from the n-ary coproduct of objects Xj to their product, for a natural number n, in the event that the map f is an isomorphism, we say that a biproduct for the objects Xj is an object isomorphic to and together with maps ij : Xj → X and pj : X → Xj such that the pair (X, {ij}) is a coproduct diagram for the objects Xj and the pair (X, {pj}) is a product diagram for the objects Xj , and where pj ∘ ij = idXj. If, in addition, the category in question has a zero object, so that for any objects A and B there is a unique map 0A,B : A → 0 → B, it often follows that pk ∘ ij = : δij, the Kronecker delta, where we interpret 0 and 1 as the 0 maps and identity maps of the objects Xj and Xk, respectively. See pre-additive category for more.
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named after Niels Henrik Abel.
In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.
In mathematics, specifically in category theory, a preadditive category is another name for an Ab-category, i.e., a category that is enriched over the category of abelian groups, Ab. That is, an Ab-categoryC is a category such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas:
In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide for finite collections of objects. The biproduct is a generalization of finite direct sums of modules.
In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts.
In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.
In category theory, the product of two objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects.
In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring and a multiplication is defined between elements of the ring and elements of the module. A module taking its scalars from a ring R is called an R-module.
In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products.
In mathematics, a monoidal category is a category C equipped with a bifunctor
In mathematics, especially in category theory, a closed monoidal category is a category that is both a monoidal category and a closed category in such a way that the structures are compatible.
The direct sum is an operation from abstract algebra, a branch of mathematics. For example, the direct sum , where is real coordinate space, is the Cartesian plane, . To see how direct sum is used in abstract algebra, consider a more elementary structure in abstract algebra, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise. A similar process can be used to form the direct sum of any two algebraic structures, such as rings, modules, and vector spaces.
In mathematics, a multicategory is a generalization of the concept of category that allows morphisms of multiple arity. If morphisms in a category are viewed as analogous to functions, then morphisms in a multicategory are analogous to functions of several variables. Multicategories, are also sometimes called operads, or colored operads.
This is a glossary of properties and concepts in category theory in mathematics.
In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category such that the tensor product is symmetric. One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field k, using the ordinary tensor product of vector spaces.
In category theory, a branch of mathematics, a monoid in a monoidal category is an object M together with two morphisms
In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It's only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.
In category theory, a branch of mathematics, dagger compact categories first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations. They also appeared in the work of John Baez and James Dolan as an instance of semistrict k-tuply monoidal n-categories, which describe general topological quantum field theories, for n = 1 and k = 3. They are a fundamental structure in Samson Abramsky and Bob Coecke's categorical quantum mechanics.
In mathematics, a braided vectorspace is a vector space together with an additional structure map symbolizing interchanging of two vector tensor copies:
In mathematics, compact objects, also referred to as finitely presented objects, or objects of finite presentation, are objects in a category satisfying a certain finiteness condition.