Image (category theory)

Last updated

In category theory, a branch of mathematics, the image of a morphism is a generalization of the image of a function.

Contents

General definition

Given a category and a morphism in , the image [1] of is a monomorphism satisfying the following universal property:

  1. There exists a morphism such that .
  2. For any object with a morphism and a monomorphism such that , there exists a unique morphism such that .

Remarks:

  1. such a factorization does not necessarily exist.
  2. is unique by definition of monic.
  3. , therefore by monic.
  4. is monic.
  5. already implies that is unique.
Image Theorie des categories.png

The image of is often denoted by or .

Proposition: If has all equalizers then the in the factorization of (1) is an epimorphism. [2]

Proof

Let be such that , one needs to show that . Since the equalizer of exists, factorizes as with monic. But then is a factorization of with monomorphism. Hence by the universal property of the image there exists a unique arrow such that and since is monic . Furthermore, one has and by the monomorphism property of one obtains .

E epimorphism.png

This means that and thus that equalizes , whence .

Second definition

In a category with all finite limits and colimits, the image is defined as the equalizer of the so-called cokernel pair, which is the cocartesian of a morphism with itself over its domain, which will result in a pair of morphisms , on which the equalizer is taken, i.e. the first of the following diagrams is cocartesian, and the second equalizing. [3]

Cokernel pair.png
Equalizer of the cokernel pair, diagram.png

Remarks:

  1. Finite bicompleteness of the category ensures that pushouts and equalizers exist.
  2. can be called regular image as is a regular monomorphism, i.e. the equalizer of a pair of morphisms. (Recall also that an equalizer is automatically a monomorphism).
  3. In an abelian category, the cokernel pair property can be written and the equalizer condition . Moreover, all monomorphisms are regular.

Theorem  If always factorizes through regular monomorphisms, then the two definitions coincide.

Proof

First definition implies the second: Assume that (1) holds with regular monomorphism.

Cokernel pair m.png
Moreover, as a regular monomorphism, is the equalizer of a pair of morphisms but we claim here that it is also the equalizer of .
Indeed, by construction thus the "cokernel pair" diagram for yields a unique morphism such that . Now, a map which equalizes also satisfies , hence by the equalizer diagram for , there exists a unique map such that .
Finally, use the cokernel pair diagram (of ) with  : there exists a unique such that . Therefore, any map which equalizes also equalizes and thus uniquely factorizes as . This exactly means that is the equalizer of .

Second definition implies the first:

Equalizerd1d2.png
Then so that by the "cokernel pair" diagram (of ), with , there exists a unique such that .
Now, from (m from the equalizer of (i1, i2) diagram), one obtains , hence by the universality in the (equalizer of (d1, d2) diagram, with f replaced by m), there exists a unique such that .

Examples

In the category of sets the image of a morphism is the inclusion from the ordinary image to . In many concrete categories such as groups, abelian groups and (left- or right) modules, the image of a morphism is the image of the correspondent morphism in the category of sets.

In any normal category with a zero object and kernels and cokernels for every morphism, the image of a morphism can be expressed as follows:

im f = ker coker f

In an abelian category (which is in particular binormal), if f is a monomorphism then f = ker coker f, and so f = im f.

Essential Image

A related notion to image is essential image. [4]

A subcategory of a (strict) category is said to be replete if for every , and for every isomorphism , both and belong to C.

Given a functor between categories, the smallest replete subcategory of the target n-category B containing the image of A under F.

See also

Related Research Articles

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.

In mathematics, an embedding is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.

<span class="mw-page-title-main">Monomorphism</span> Injective homomorphism

In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation .

In category theory, an epimorphism is a morphism f : XY that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: YZ,

In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.

The snake lemma is a tool used in mathematics, particularly homological algebra, to construct long exact sequences. The snake lemma is valid in every abelian category and is a crucial tool in homological algebra and its applications, for instance in algebraic topology. Homomorphisms constructed with its help are generally called connecting homomorphisms.

<span class="mw-page-title-main">Exact sequence</span> Sequence of homomorphisms such that each kernel equals the preceding image

An exact sequence is a sequence of morphisms between objects such that the image of one morphism equals the kernel of the next.

<span class="mw-page-title-main">Homological algebra</span> Branch of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

The cokernel of a linear mapping of vector spaces f : XY is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f.

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In category theory, a branch of mathematics, a pushout is the colimit of a diagram consisting of two morphisms f : ZX and g : ZY with a common domain. The pushout consists of an object P along with two morphisms XP and YP that complete a commutative square with the two given morphisms f and g. In fact, the defining universal property of the pushout essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are and .

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In category theory, a branch of mathematics, a pullback is the limit of a diagram consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is written

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class that includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

In mathematics, specifically in category theory, an -coalgebra is a structure defined according to a functor , with specific properties as defined below. For both algebras and coalgebras, a functor is a convenient and general way of organizing a signature. This has applications in computer science: examples of coalgebras include lazy evaluation, infinite data structures, such as streams, and also transition systems.

This is a glossary of properties and concepts in category theory in mathematics.

<span class="mw-page-title-main">Nodal decomposition</span>

In category theory, an abstract mathematical discipline, a nodal decomposition of a morphism is a representation of as a product , where is a strong epimorphism, a bimorphism, and a strong monomorphism.

In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences to the category of abelian groups.

References

  1. Mitchell, Barry (1965), Theory of categories, Pure and applied mathematics, vol. 17, Academic Press, ISBN   978-0-12-499250-4, MR   0202787 Section I.10 p.12
  2. Mitchell, Barry (1965), Theory of categories, Pure and applied mathematics, vol. 17, Academic Press, ISBN   978-0-12-499250-4, MR   0202787 Proposition 10.1 p.12
  3. Kashiwara, Masaki; Schapira, Pierre (2006), "Categories and Sheaves", Grundlehren der Mathematischen Wissenschaften, vol. 332, Berlin Heidelberg: Springer, pp. 113–114 Definition 5.1.1
  4. "essential image in nLab". ncatlab.org. Retrieved 2024-11-15.