Flat topology

Last updated

In mathematics, the flat topology is a Grothendieck topology used in algebraic geometry. It is used to define the theory of flat cohomology; it also plays a fundamental role in the theory of descent (faithfully flat descent). [1] The term flat here comes from flat modules.

Contents

There are several slightly different flat topologies, the most common of which are the fppf topology and the fpqc topology. fppf stands for fidèlement plate de présentation finie, and in this topology, a morphism of affine schemes is a covering morphism if it is faithfully flat and of finite presentation. fpqc stands for fidèlement plate et quasi-compacte, and in this topology, a morphism of affine schemes is a covering morphism if it is faithfully flat. In both categories, a covering family is defined be a family which is a cover on Zariski open subsets. [2] In the fpqc topology, any faithfully flat and quasi-compact morphism is a cover. [3] These topologies are closely related to descent. The "pure" faithfully flat topology without any further finiteness conditions such as quasi compactness or finite presentation is not used much as is not subcanonical; in other words, representable functors need not be sheaves.

Unfortunately the terminology for flat topologies is not standardized. Some authors use the term "topology" for a pretopology, and there are several slightly different pretopologies sometimes called the fppf or fpqc (pre)topology, which sometimes give the same topology.

Flat cohomology was introduced by Grothendieck in about 1960. [4]

The big and small fppf sites

Let X be an affine scheme. We define an fppf cover of X to be a finite and jointly surjective family of morphisms

(φa : XaX)

with each Xa affine and each φa flat, finitely presented. This generates a pretopology: for X arbitrary, we define an fppf cover of X to be a family

(φa : XaX)

which is an fppf cover after base changing to an open affine subscheme of X. This pretopology generates a topology called the fppf topology. (This is not the same as the topology we would get if we started with arbitrary X and Xa and took covering families to be jointly surjective families of flat, finitely presented morphisms.) We write Fppf for the category of schemes with the fppf topology.

The small fppf site of X is the category O(Xfppf) whose objects are schemes U with a fixed morphism UX which is part of some covering family. (This does not imply that the morphism is flat, finitely presented.) The morphisms are morphisms of schemes compatible with the fixed maps to X. The large fppf site of X is the category Fppf/X, that is, the category of schemes with a fixed map to X, considered with the fppf topology.

"Fppf" is an abbreviation for "fidèlement plate de présentation finie", that is, "faithfully flat and of finite presentation". Every surjective family of flat and finitely presented morphisms is a covering family for this topology, hence the name. The definition of the fppf pretopology can also be given with an extra quasi-finiteness condition; it follows from Corollary 17.16.2 in EGA IV4 that this gives the same topology.

The big and small fpqc sites

Let X be an affine scheme. We define an fpqc cover of X to be a finite and jointly surjective family of morphisms {uα : XαX} with each Xα affine and each uα flat. This generates a pretopology: For X arbitrary, we define an fpqc cover of X to be a family {uα : XαX} which is an fpqc cover after base changing to an open affine subscheme of X. This pretopology generates a topology called the fpqc topology. (This is not the same as the topology we would get if we started with arbitrary X and Xα and took covering families to be jointly surjective families of flat morphisms.) We write Fpqc for the category of schemes with the fpqc topology.

The small fpqc site of X is the category O(Xfpqc) whose objects are schemes U with a fixed morphism UX which is part of some covering family. The morphisms are morphisms of schemes compatible with the fixed maps to X. The large fpqc site of X is the category Fpqc/X, that is, the category of schemes with a fixed map to X, considered with the fpqc topology.

"Fpqc" is an abbreviation for "fidèlement plate quasi-compacte", that is, "faithfully flat and quasi-compact". Every surjective family of flat and quasi-compact morphisms is a covering family for this topology, hence the name.

Flat cohomology

The procedure for defining the cohomology groups is the standard one: cohomology is defined as the sequence of derived functors of the functor taking the sections of a sheaf of abelian groups.

While such groups have a number of applications, they are not in general easy to compute, except in cases where they reduce to other theories, such as the étale cohomology.

Example

The following example shows why the "faithfully flat topology" without any finiteness conditions does not behave well. Suppose X is the affine line over an algebraically closed field k. For each closed point x of X we can consider the local ring Rx at this point, which is a discrete valuation ring whose spectrum has one closed point and one open (generic) point. We glue these spectra together by identifying their open points to get a scheme Y. There is a natural map from Y to X. The affine line X is covered by the sets Spec(Rx) which are open in the faithfully flat topology, and each of these sets has a natural map to Y, and these maps are the same on intersections. However they cannot be combined to give a map from X to Y, because the underlying spaces of X and Y have different topologies.

See also

Notes

  1. "Form of an (algebraic) structure", Encyclopedia of Mathematics , EMS Press, 2001 [1994]
  2. SGA III1, IV 6.3.
  3. SGA III1, IV 6.3, Proposition 6.3.1(v).

Related Research Articles

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphismf from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e.,

In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. But, through many generalizations the notion of algebraic stacks was finally discovered by Michael Artin.

In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.

In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.

In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: XY, we can define a new sheaf fF on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of fF is given by the global sections of F. This assignment gives rise to a functor f from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.

In algebraic geometry, an étale morphism is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.

The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces.

In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use.

In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.

In mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of image functors for sheaves. It is needed to express Verdier duality in its most general form.

In algebraic geometry, the h topology is a Grothendieck topology introduced by Vladimir Voevodsky to study the homology of schemes. It combines several good properties possessed by its related "sub"topologies, such as the qfh and cdh topologies. It has subsequently been used by Beilinson to study p-adic Hodge theory, in Bhatt and Scholze's work on projectivity of the affine Grassmanian, Huber and Jörder's study of differential forms, etc.

This is a glossary of algebraic geometry.

In algebraic geometry, there are two slightly different definitions of an fpqc morphism, both variations of faithfully flat morphisms.

In category theory, a branch of mathematics, a fiber functor is a faithful k-linear tensor functor from a tensor category to the category of finite-dimensional k-vector spaces.

In mathematics, especially in algebraic geometry, the v-topology is a Grothendieck topology whose covers are characterized by lifting maps from valuation rings. This topology was introduced by Rydh (2010) and studied further by Bhatt & Scholze (2017), who introduced the name v-topology, where v stands for valuation.

References