Fpqc morphism

Last updated

In algebraic geometry, there are two slightly different definitions of an fpqc morphism, both variations of faithfully flat morphisms.

Sometimes an fpqc morphism means one that is faithfully flat and quasi-compact. This is where the abbreviation fpqc comes from: fpqc stands for the French phrase "fidèlement plat et quasi-compact", meaning "faithfully flat and quasi-compact".

However it is more common to define an fpqc morphism of schemes to be a faithfully flat morphism that satisfies the following equivalent conditions:

  1. Every quasi-compact open subset of Y is the image of a quasi-compact open subset of X.
  2. There exists a covering of Y by open affine subschemes such that each is the image of a quasi-compact open subset of X.
  3. Each point has a neighborhood such that is open and is quasi-compact.
  4. Each point has a quasi-compact neighborhood such that is open affine.

Examples: An open faithfully flat morphism is fpqc.

An fpqc morphism satisfies the following properties:

See also

Related Research Articles

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphismf from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e.,

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent, and Giraud the general theory of stacks, the notion of algebraic stacks was defined by Michael Artin.

In algebraic geometry, a closed immersion of schemes is a morphism of schemes that identifies Z as a closed subset of X such that locally, regular functions on Z can be extended to X. The latter condition can be formalized by saying that is surjective.

In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.

In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: XY, we can define a new sheaf fF on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of fF is given by the global sections of F. This assignment gives rise to a functor f from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.

In algebraic geometry, an étale morphism is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.

In mathematics, the flat topology is a Grothendieck topology used in algebraic geometry. It is used to define the theory of flat cohomology; it also plays a fundamental role in the theory of descent. The term flat here comes from flat modules.

In algebraic geometry, a morphism between schemes is said to be quasi-compact if Y can be covered by open affine subschemes such that the pre-images are compact. If f is quasi-compact, then the pre-image of a compact open subscheme under f is compact.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.

In topology, constructible sets are a class of subsets of a topological space that have a relatively "simple" structure. They are used particularly in algebraic geometry and related fields. A key result known as Chevalley's theorem in algebraic geometry shows that the image of a constructible set is constructible for an important class of mappings (more specifically morphisms) of algebraic varieties . In addition, a large number of "local" geometric properties of schemes, morphisms and sheaves are (locally) constructible. Constructible sets also feature in the definition of various types of constructible sheaves in algebraic geometry and intersection cohomology.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials.

In algebraic geometry, the h topology is a Grothendieck topology introduced by Vladimir Voevodsky to study the homology of schemes. It combines several good properties possessed by its related "sub"topologies, such as the qfh and cdh topologies. It has subsequently been used by Beilinson to study p-adic Hodge theory, in Bhatt and Scholze's work on projectivity of the affine Grassmanian, Huber and Jörder's study of differential forms, etc.

This is a glossary of algebraic geometry.

In algebraic geometry, a torsor or a principal bundle is an analogue of a principal bundle in algebraic topology. Because there are few open sets in Zariski topology, it is more common to consider torsors in étale topology or some other flat topologies. The notion also generalizes a Galois extension in abstract algebra. Though other notions of torsors are known in more general context this article will focus on torsors over schemes, the original setting where torsors have been thought for. The word torsor comes from the French torseur. They are indeed widely discussed, for instance, in Michel Demazure's and Pierre Gabriel's famous book Groupes algébriques, Tome I.

Faithfully flat descent is a technique from algebraic geometry, allowing one to draw conclusions about objects on the target of a faithfully flat morphism. Such morphisms, that are flat and surjective, are common, one example coming from an open cover.

References