Galois cohomology

Last updated

In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group G associated to a field extension L/K acts in a natural way on some abelian groups, for example those constructed directly from L, but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor.

Contents

History

The current theory of Galois cohomology came together around 1950, when it was realised that the Galois cohomology of ideal class groups in algebraic number theory was one way to formulate class field theory, at the time it was in the process of ridding itself of connections to L-functions. Galois cohomology makes no assumption that Galois groups are abelian groups, so this was a non-abelian theory. It was formulated abstractly as a theory of class formations. Two developments of the 1960s turned the position around. Firstly, Galois cohomology appeared as the foundational layer of étale cohomology theory (roughly speaking, the theory as it applies to zero-dimensional schemes). Secondly, non-abelian class field theory was launched as part of the Langlands philosophy.

The earliest results identifiable as Galois cohomology had been known long before, in algebraic number theory and the arithmetic of elliptic curves. The normal basis theorem implies that the first cohomology group of the additive group of L will vanish; this is a result on general field extensions, but was known in some form to Richard Dedekind. The corresponding result for the multiplicative group is known as Hilbert's Theorem 90, and was known before 1900. Kummer theory was another such early part of the theory, giving a description of the connecting homomorphism coming from the m-th power map.

In fact, for a while the multiplicative case of a 1-cocycle for groups that are not necessarily cyclic was formulated as the solubility of Noether's equations, named for Emmy Noether; they appear under this name in Emil Artin's treatment of Galois theory, and may have been folklore in the 1920s. The case of 2-cocycles for the multiplicative group is that of the Brauer group, and the implications seem to have been well known to algebraists of the 1930s.

In another direction, that of torsors, these were already implicit in the infinite descent arguments of Fermat for elliptic curves. Numerous direct calculations were done, and the proof of the Mordell–Weil theorem had to proceed by some surrogate of a finiteness proof for a particular H1 group. The 'twisted' nature of objects over fields that are not algebraically closed, which are not isomorphic but become so over the algebraic closure, was also known in many cases linked to other algebraic groups (such as quadratic forms, simple algebras, Severi–Brauer varieties), in the 1930s, before the general theory arrived.

The needs of number theory were in particular expressed by the requirement to have control of a local-global principle for Galois cohomology. This was formulated by means of results in class field theory, such as Hasse's norm theorem. In the case of elliptic curves, it led to the key definition of the Tate–Shafarevich group in the Selmer group, which is the obstruction to the success of a local-global principle. Despite its great importance, for example in the Birch and Swinnerton-Dyer conjecture, it proved very difficult to get any control of it, until results of Karl Rubin gave a way to show in some cases it was finite (a result generally believed, since its conjectural order was predicted by an L-function formula).

The other major development of the theory, also involving John Tate was the Tate–Poitou duality result.

Technically speaking, G may be a profinite group, in which case the definitions need to be adjusted to allow only continuous cochains.

Formal details

Galois cohomology is the study of the group cohomology of Galois groups. [1] Let be a field extension with Galois group and an abelian group on which acts. The cohomology group:

is the Galois cohomology group associated to the representation of the Galois group on . It is possible, moreover, to extend this definition to the case when is a non-abelian group and , and this extension is required for some of the most important applications of the theory. In particular, is the set of fixed points of the Galois group in , and is related to the 1-cocycles (which parametrize quaternion algebras for instance).

When the extension field is the separable closure of the field , one often writes instead and

Hilbert's theorem 90 in cohomological language is the statement that the first cohomology group with values in the multiplicative group of is trivial for a Galois extension :

This vanishing theorem can be generalized to a large class of algebraic groups, also formulated in the language of Galois cohomology. The most straightforward generalization is that for any quasisplit -torus ,

Denote by the general linear group in dimensions. Then Hilbert 90 is the special case of

Likewise, the vanishing theorem holds for the special linear group and for the symplectic group where is a non-degenerate alternating bilinear form defined over .

The second cohomology group describes the factor systems attached to the Galois group. Thus for any normal extension , the relative Brauer group can be identified with the group

As a special case, with the separable closure,

Related Research Articles

In number theory, the ideal class group of an algebraic number field K is the quotient group JK /PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory.

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of the p-adic numbersQp (where p is any prime number), or the field of formal Laurent series Fq((T)) over a finite field Fq.

In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is

In number theory, the Hasse norm theorem states that if L/K is a cyclic extension of number fields, then if a nonzero element of K is a local norm everywhere, then it is a global norm. Here to be a global norm means to be an element k of K such that there is an element l of L with ; in other words k is a relative norm of some element of the extension field L. To be a local norm means that for some prime p of K and some prime P of L lying over K, then k is a norm from LP; here the "prime" p can be an archimedean valuation, and the theorem is a statement about completions in all valuations, archimedean and non-archimedean.

In mathematics, a Severi–Brauer variety over a field K is an algebraic variety V which becomes isomorphic to a projective space over an algebraic closure of K. The varieties are associated to central simple algebras in such a way that the algebra splits over K if and only if the variety has a rational point over K. Francesco Severi studied these varieties, and they are also named after Richard Brauer because of their close relation to the Brauer group.

Hilbert's twelfth problem is the extension of the Kronecker–Weber theorem on abelian extensions of the rational numbers, to any base number field. It is one of the 23 mathematical Hilbert problems and asks for analogues of the roots of unity that generate a whole family of further number fields, analogously to the cyclotomic fields and their subfields. Leopold Kronecker described the complex multiplication issue as his liebster Jugendtraum, or "dearest dream of his youth", so the problem is also known as Kronecker's Jugendtraum.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group A. Often, this construction is made in the following situation: G is a commutative group scheme over a field K, Ks is the separable closure of K, and A = G(Ks). In this case, the Tate module of A is equipped with an action of the absolute Galois group of K, and it is referred to as the Tate module of G.

In mathematics, an Azumaya algebra is a generalization of central simple algebras to -algebras where need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

In mathematics, a class formation is a topological group acting on a module satisfying certain conditions. Class formations were introduced by Emil Artin and John Tate to organize the various Galois groups and modules that appear in class field theory.

In mathematics, the norm residue isomorphism theorem is a long-sought result relating Milnor K-theory and Galois cohomology. The result has a relatively elementary formulation and at the same time represents the key juncture in the proofs of many seemingly unrelated theorems from abstract algebra, theory of quadratic forms, algebraic K-theory and the theory of motives. The theorem asserts that a certain statement holds true for any prime and any natural number . John Milnor speculated that this theorem might be true for and all , and this question became known as Milnor's conjecture. The general case was conjectured by Spencer Bloch and Kazuya Kato and became known as the Bloch–Kato conjecture or the motivic Bloch–Kato conjecture to distinguish it from the Bloch–Kato conjecture on values of L-functions. The norm residue isomorphism theorem was proved by Vladimir Voevodsky using a number of highly innovative results of Markus Rost.

In mathematics, a factor system is a fundamental tool of Otto Schreier’s classical theory for group extension problem. It consists of a set of automorphisms and a binary function on a group satisfying certain condition. In fact, a factor system constitutes a realisation of the cocycles in the second cohomology group in group cohomology.

In the mathematical field of algebraic number theory, the concept of principalization refers to a situation when, given an extension of algebraic number fields, some ideal of the ring of integers of the smaller field isn't principal but its extension to the ring of integers of the larger field is. Its study has origins in the work of Ernst Kummer on ideal numbers from the 1840s, who in particular proved that for every algebraic number field there exists an extension number field such that all ideals of the ring of integers of the base field become principal when extended to the larger field. In 1897 David Hilbert conjectured that the maximal abelian unramified extension of the base field, which was later called the Hilbert class field of the given base field, is such an extension. This conjecture, now known as principal ideal theorem, was proved by Philipp Furtwängler in 1930 after it had been translated from number theory to group theory by Emil Artin in 1929, who made use of his general reciprocity law to establish the reformulation. Since this long desired proof was achieved by means of Artin transfers of non-abelian groups with derived length two, several investigators tried to exploit the theory of such groups further to obtain additional information on the principalization in intermediate fields between the base field and its Hilbert class field. The first contributions in this direction are due to Arnold Scholz and Olga Taussky in 1934, who coined the synonym capitulation for principalization. Another independent access to the principalization problem via Galois cohomology of unit groups is also due to Hilbert and goes back to the chapter on cyclic extensions of number fields of prime degree in his number report, which culminates in the famous Theorem 94.

References

  1. "Galois cohomology", Encyclopedia of Mathematics , EMS Press, 2001 [1994]