Kummer theory

Last updated

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

Contents

Kummer theory is basic, for example, in class field theory and in general in understanding abelian extensions; it says that in the presence of enough roots of unity, cyclic extensions can be understood in terms of extracting roots. The main burden in class field theory is to dispense with extra roots of unity ('descending' back to smaller fields); which is something much more serious.

Kummer extensions

A Kummer extension is a field extension L/K, where for some given integer n > 1 we have

For example, when n = 2, the first condition is always true if K has characteristic 2. The Kummer extensions in this case include quadratic extensions where a in K is a non-square element. By the usual solution of quadratic equations, any extension of degree 2 of K has this form. The Kummer extensions in this case also include biquadratic extensions and more general multiquadratic extensions. When K has characteristic 2, there are no such Kummer extensions.

Taking n = 3, there are no degree 3 Kummer extensions of the rational number field Q, since for three cube roots of 1 complex numbers are required. If one takes L to be the splitting field of X3a over Q, where a is not a cube in the rational numbers, then L contains a subfield K with three cube roots of 1; that is because if α and β are roots of the cubic polynomial, we shall have (α/β)3 =1 and the cubic is a separable polynomial. Then L/K is a Kummer extension.

More generally, it is true that when K contains n distinct nth roots of unity, which implies that the characteristic of K doesn't divide n, then adjoining to K the nth root of any element a of K creates a Kummer extension (of degree m, for some m dividing n). As the splitting field of the polynomial Xna, the Kummer extension is necessarily Galois, with Galois group that is cyclic of order m. It is easy to track the Galois action via the root of unity in front of

Kummer theory provides converse statements. When K contains n distinct nth roots of unity, it states that any abelian extension of K of exponent dividing n is formed by extraction of roots of elements of K. Further, if K× denotes the multiplicative group of non-zero elements of K, abelian extensions of K of exponent n correspond bijectively with subgroups of

that is, elements of K× modulo nth powers. The correspondence can be described explicitly as follows. Given a subgroup

the corresponding extension is given by

where

In fact it suffices to adjoin nth root of one representative of each element of any set of generators of the group Δ. Conversely, if L is a Kummer extension of K, then Δ is recovered by the rule

In this case there is an isomorphism

given by

where α is any nth root of a in L. Here denotes the multiplicative group of nth roots of unity (which belong to K) and is the group of continuous homomorphisms from equipped with Krull topology to with discrete topology (with group operation given by pointwise multiplication). This group (with discrete topology) can also be viewed as Pontryagin dual of , assuming we regard as a subgroup of circle group. If the extension L/K is finite, then is a finite discrete group and we have

however the last isomorphism isn't natural.

Recovering a1/n from a primitive element

For prime, let be a field containing and a degree Galois extension. Note the Galois group is cyclic, generated by . Let

Then

Since and

,

where the sign is if is odd and if .

When is an abelian extension of degree square-free such that , apply the same argument to the subfields Galois of degree to obtain

where

.

The Kummer Map

One of the main tools in Kummer theory is the Kummer map. Let be a positive integer and let be a field, not necessarily containing the th roots of unity. Letting denote the algebraic closure of , there is a short exact sequence

Choosing an extension and taking -cohomology one obtains the sequence

By Hilbert's Theorem 90 , and hence we get an isomorphism . This is the Kummer map. A version of this map also exists when all are considered simultaneously. Namely, since , taking the direct limit over yields an isomorphism

,

where tors denotes the torsion subgroup of roots of unity.

For Elliptic Curves

Kummer theory is often used in the context of elliptic curves. Let be an elliptic curve. There is a short exact sequence

,

where the multiplication by map is surjective since is divisible. Choosing an algebraic extension and taking cohomology, we obtain the Kummer sequence for :

.

The computation of the weak Mordell-Weil group is a key part of the proof of the Mordell-Weil theorem. The failure of to vanish adds a key complexity to the theory.

Generalizations

Suppose that G is a profinite group acting on a module A with a surjective homomorphism π from the G-module A to itself. Suppose also that G acts trivially on the kernel C of π and that the first cohomology group H1(G,A) is trivial. Then the exact sequence of group cohomology shows that there is an isomorphism between AG/π(AG) and Hom(G,C).

Kummer theory is the special case of this when A is the multiplicative group of the separable closure of a field k, G is the Galois group, π is the nth power map, and C the group of nth roots of unity. Artin–Schreier theory is the special case when A is the additive group of the separable closure of a field k of positive characteristic p, G is the Galois group, π is the Frobenius map minus the identity, and C the finite field of order p. Taking A to be a ring of truncated Witt vectors gives Witt's generalization of Artin–Schreier theory to extensions of exponent dividing pn.

See also

Related Research Articles

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial splits into linear terms when reduced mod . That is, it determines for which prime numbers the relation

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In field theory, the primitive element theorem is a result characterizing the finite degree field extensions that can be generated by a single element. Such a generating element is called a primitive element of the field extension, and the extension is called a simple extension in this case. The theorem states that a finite extension is simple if and only if there are only finitely many intermediate fields. An older result, also often called "primitive element theorem", states that every finite separable extension is simple; it can be seen as a consequence of the former theorem. These theorems imply in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield.

In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K.

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class which includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

In abstract algebra, Hilbert's Theorem 90 is an important result on cyclic extensions of fields that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

In mathematics, an Azumaya algebra is a generalization of central simple algebras to R-algebras where R need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where R is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

In field theory, a branch of mathematics, the minimal polynomial of an element α of a field is, roughly speaking, the polynomial of lowest degree having coefficients in the field, such that α is a root of the polynomial. If the minimal polynomial of α exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1, and the type for the remaining coefficients could be integers, rational numbers, real numbers, or others.

In mathematics, a CM-field is a particular type of number field, so named for a close connection to the theory of complex multiplication. Another name used is J-field.

The purpose of this page is to provide supplementary materials for the ordinary least squares article, reducing the load of the main article with mathematics and improving its accessibility, while at the same time retaining the completeness of exposition.

In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to Q, the field of rational numbers.

In mathematics and more specifically in field theory, a radical extension of a field K is an extension of K that is obtained by adjoining a sequence of nth roots of elements.

In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation is the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman who showed that when the utilisation parameter of an M/M/1 queue is near 1 a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.

In number theory, a symbol is any of many different generalizations of the Legendre symbol. This article describes the relations between these various generalizations.

References