Grothendieck construction

Last updated

The Grothendieck construction (named after Alexander Grothendieck) is a construction used in the mathematical field of category theory. It is a fundamental construction in the theory of descent, in the theory of stacks, and in fibred category theory. In categorical logic, the construction is used to model the relationship between a type theory and a logic over that type theory, and allows for the translation of concepts from indexed category theory into fibred category theory, such as Lawvere's concept of hyperdoctrine.

Contents

The Grothendieck construction was first studied for the special case presheaves of sets by Mac Lane, where it was called the category of elements. [1]

Motivation

If is a family of sets indexed by another set, one can form the disjoint union or coproduct

,

which is the set of all ordered pairs such that . The disjoint union set is naturally equipped with a "projection" map

defined by

.

From the projection it is possible to reconstruct the original family of sets up to a canonical bijection, as for each via the bijection . In this context, for , the preimage of the singleton set is called the "fiber" of over , and any set equipped with a choice of function is said to be "fibered" over . In this way, the disjoint union construction provides a way of viewing any family of sets indexed by as a set "fibered" over , and conversely, for any set fibered over , we can view it as the disjoint union of the fibers of . Jacobs has referred to these two perspectives as "display indexing" and "pointwise indexing". [2]

The Grothendieck construction generalizes this to categories. For each category , family of categories indexed by the objects of in a functorial way, the Grothendieck construction returns a new category fibered over by a functor whose fibers are the categories .

Definition

Let be a functor from any small category to the category of small categories. The Grothendieck construction for is the category (also written , or ), with

Composition of morphisms is defined by .

Example

If is a group, then it can be viewed as a category, with one object and all morphisms invertible. Let be a functor whose value at the sole object of is the category a category representing the group in the same way. The requirement that be a functor is then equivalent to specifying a group homomorphism where denotes the group of automorphisms of Finally, the Grothendieck construction, results in a category with one object, which can again be viewed as a group, and in this case, the resulting group is (isomorphic to) the semidirect product

See also

Related Research Articles

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

<span class="mw-page-title-main">Universal property</span> Characterizing property of mathematical constructions

In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property.

In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory. It allows the embedding of any locally small category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.

In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In category theory, the product of two objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent, and Giraud the general theory of stacks, the notion of algebraic stacks was defined by Michael Artin.

In mathematics, a comma category is a construction in category theory. It provides another way of looking at morphisms: instead of simply relating objects of a category to one another, morphisms become objects in their own right. This notion was introduced in 1963 by F. W. Lawvere, although the technique did not become generally known until many years later. Several mathematical concepts can be treated as comma categories. Comma categories also guarantee the existence of some limits and colimits. The name comes from the notation originally used by Lawvere, which involved the comma punctuation mark. The name persists even though standard notation has changed, since the use of a comma as an operator is potentially confusing, and even Lawvere dislikes the uninformative term "comma category".

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In general topology and related areas of mathematics, the final topology on a set with respect to a family of functions from topological spaces into is the finest topology on that makes all those functions continuous.

Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.

This is a glossary of properties and concepts in category theory in mathematics.

The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces.

This is a glossary of algebraic geometry.

In algebraic geometry, a prestackF over a category C equipped with some Grothendieck topology is a category together with a functor p: FC satisfying a certain lifting condition and such that locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object.

In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site taking values in simplicial sets. Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In mathematics, the base change theorems relate the direct image and the inverse image of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves:

References

Specific
  1. Mac Lane, Saunders; Moerdijk, Ieke (1994). Sheaves in geometry and logic: a first introduction to topos theory (2., corr. print ed.). New York: Springer. ISBN   9780387977102.
  2. Jacobs, Bart (1999). Categorical logic and type theory. Amsterdam Lausanne New York [etc.]: Elsevier. ISBN   0444501703.