Functor (functional programming)

Last updated
Applying fmap (+1) to a binary tree of integers increments each integer in the tree by one. Tree as a functor.svg
Applying fmap (+1) to a binary tree of integers increments each integer in the tree by one.

In functional programming, a functor is a design pattern inspired by the definition from category theory that allows one to apply a function to values inside a generic type without changing the structure of the generic type. In Haskell this idea can be captured in a type class:

Contents

classFunctorfwherefmap::(a->b)->fa->fb

This declaration says that any type of Functor must support a method fmap, which maps a function over the element(s) of the Functor.

Functors in Haskell should also obey functor laws, [1] which state that the mapping operation preserves the identity function and composition of functions:

fmapid=idfmap(g.h)=(fmapg).(fmaph)

(where . stands for function composition).

In Scala a trait can be used:

traitFunctor[F[_]]{defmap[A,B](a:F[A])(f:A=>B):F[B]}

Functors form a base for more complex abstractions like Applicative Functor, Monad, and Comonad, all of which build atop a canonical functor structure. Functors are useful in modeling functional effects by values of parameterized data types. Modifiable computations are modeled by allowing a pure function to be applied to values of the "inner" type, thus creating the new overall value which represents the modified computation (which might yet to be run).

Examples

In Haskell, lists are a simple example of a functor. We may implement fmap as

fmapf[]=[]fmapf(x:xs)=(fx):fmapfxs

A binary tree may similarly be described as a functor:

dataTreea=Leaf|Nodea(Treea)(Treea)instanceFunctorTreewherefmapfLeaf=Leaffmapf(Nodexlr)=Node(fx)(fmapfl)(fmapfr)

If we have a binary tree tr :: Tree a and a function f :: a -> b, the function fmap f tr will apply f to every element of tr. For example, if a is Int, adding 1 to each element of tr can be expressed as fmap (+ 1) tr. [2]

See also

Related Research Articles

Standard ML (SML) is a general-purpose, modular, functional programming language with compile-time type checking and type inference. It is popular among compiler writers and programming language researchers, as well as in the development of theorem provers.

Generic programming is a style of computer programming in which algorithms are written in terms of data types to-be-specified-later that are then instantiated when needed for specific types provided as parameters. This approach, pioneered by the ML programming language in 1973, permits writing common functions or types that differ only in the set of types on which they operate when used, thus reducing duplicate code.

In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: "either it will or will not be a match." The patterns generally have the form of either sequences or tree structures. Uses of pattern matching include outputting the locations of a pattern within a token sequence, to output some component of the matched pattern, and to substitute the matching pattern with some other token sequence.

In computer programming, especially functional programming and type theory, an algebraic data type (ADT) is a kind of composite type, i.e., a type formed by combining other types.

In computer science, a tagged union, also called a variant, variant record, choice type, discriminated union, disjoint union, sum type or coproduct, is a data structure used to hold a value that could take on several different, but fixed, types. Only one of the types can be in use at any one time, and a tag field explicitly indicates which one is in use. It can be thought of as a type that has several "cases", each of which should be handled correctly when that type is manipulated. This is critical in defining recursive datatypes, in which some component of a value may have the same type as that value, for example in defining a type for representing trees, where it is necessary to distinguish multi-node subtrees and leaves. Like ordinary unions, tagged unions can save storage by overlapping storage areas for each type, since only one is in use at a time.

In functional programming, a monad is a structure that combines program fragments (functions) and wraps their return values in a type with additional computation. In addition to defining a wrapping monadic type, monads define two operators: one to wrap a value in the monad type, and another to compose together functions that output values of the monad type. General-purpose languages use monads to reduce boilerplate code needed for common operations. Functional languages use monads to turn complicated sequences of functions into succinct pipelines that abstract away control flow, and side-effects.

In computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure. The term was introduced in Driscoll, Sarnak, Sleator, and Tarjans' 1986 article.

In computer science, corecursion is a type of operation that is dual to recursion. Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case. Put simply, corecursive algorithms use the data that they themselves produce, bit by bit, as they become available, and needed, to produce further bits of data. A similar but distinct concept is generative recursion which may lack a definite "direction" inherent in corecursion and recursion.

In computer science, a type class is a type system construct that supports ad hoc polymorphism. This is achieved by adding constraints to type variables in parametrically polymorphic types. Such a constraint typically involves a type class T and a type variable a, and means that a can only be instantiated to a type whose members support the overloaded operations associated with T.

In category theory, the concept of catamorphism denotes the unique homomorphism from an initial algebra into some other algebra.

In computer science, weight-balanced binary trees (WBTs) are a type of self-balancing binary search trees that can be used to implement dynamic sets, dictionaries (maps) and sequences. These trees were introduced by Nievergelt and Reingold in the 1970s as trees of bounded balance, or BB[α] trees. Their more common name is due to Knuth.

In many programming languages, map is the name of a higher-order function that applies a given function to each element of a collection, e.g. a list or set, returning the results in a collection of the same type. It is often called apply-to-all when considered in functional form.

In functional programming, fold refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value. Typically, a fold is presented with a combining function, a top node of a data structure, and possibly some default values to be used under certain conditions. The fold then proceeds to combine elements of the data structure's hierarchy, using the function in a systematic way.

In computer programming, an anamorphism is a function that generates a sequence by repeated application of the function to its previous result. You begin with some value A and apply a function f to it to get B. Then you apply f to B to get C, and so on until some terminating condition is reached. The anamorphism is the function that generates the list of A, B, C, etc. You can think of the anamorphism as unfolding the initial value into a sequence.

A zipper is a technique of representing an aggregate data structure so that it is convenient for writing programs that traverse the structure arbitrarily and update its contents, especially in purely functional programming languages. The zipper was described by Gérard Huet in 1997. It includes and generalizes the gap buffer technique sometimes used with arrays.

In computer science, and in particular functional programming, a hylomorphism is a recursive function, corresponding to the composition of an anamorphism followed by a catamorphism. Fusion of these two recursive computations into a single recursive pattern then avoids building the intermediate data structure. This is an example of deforestation, a program optimization strategy. A related type of function is a metamorphism, which is a catamorphism followed by an anamorphism.

In programming languages, defunctionalization is a compile-time transformation which eliminates higher-order functions, replacing them by a single first-order apply function. The technique was first described by John C. Reynolds in his 1972 paper, "Definitional Interpreters for Higher-Order Programming Languages". Reynolds' observation was that a given program contains only finitely many function abstractions, so that each can be assigned and replaced by a unique identifier. Every function application within the program is then replaced by a call to the apply function with the function identifier as the first argument. The apply function's only job is to dispatch on this first argument, and then perform the instructions denoted by the function identifier on the remaining arguments.

This article describes the features in the programming language Haskell.

Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but is designed to be a general-purpose programming language similar to Haskell.

In functional programming, an applicative functor, or an applicative for short, is an intermediate structure between functors and monads. Applicative functors allow for functorial computations to be sequenced, but don't allow using results from prior computations in the definition of subsequent ones. Applicative functors are the programming equivalent of lax monoidal functors with tensorial strength in category theory.

References

  1. Yorgey, Brent. "Functor > Laws". HaskellWiki. Retrieved 17 June 2023.
  2. "Functors". Functional Pearls. University of Maryland. Retrieved 12 December 2022.