In mathematics, particularly p-adic analysis, the p-adic exponential function is a p-adic analogue of the usual exponential function on the complex numbers. As in the complex case, it has an inverse function, named the p-adic logarithm.
The usual exponential function on C is defined by the infinite series
Entirely analogously, one defines the exponential function on Cp, the completion of the algebraic closure of Qp, by
However, unlike exp which converges on all of C, expp only converges on the disc
This is because p-adic series converge if and only if the summands tend to zero, and since the n! in the denominator of each summand tends to make them large p-adically, a small value of z is needed in the numerator. It follows from Legendre's formula that if then tends to , p-adically.
Although the p-adic exponential is sometimes denoted ex, the number e itself has no p-adic analogue. This is because the power series expp(x) does not converge at x = 1. It is possible to choose a number e to be a p-th root of expp(p) for p ≠ 2, [a] but there are multiple such roots and there is no canonical choice among them. [1]
The power series
converges for x in Cp satisfying |x|p < 1 and so defines the p-adic logarithm function logp(z) for |z − 1|p < 1 satisfying the usual property logp(zw) = logpz + logpw. The function logp can be extended to all of C ×
p (the set of nonzero elements of Cp) by imposing that it continues to satisfy this last property and setting logp(p) = 0. Specifically, every element w of C ×
p can be written as w = pr·ζ·z with r a rational number, ζ a root of unity, and |z − 1|p < 1, [2] in which case logp(w) = logp(z). [b] This function on C ×
p is sometimes called the Iwasawa logarithm to emphasize the choice of logp(p) = 0. In fact, there is an extension of the logarithm from |z − 1|p < 1 to all of C ×
p for each choice of logp(p) in Cp. [3]
If z and w are both in the radius of convergence for expp, then their sum is too and we have the usual addition formula: expp(z + w) = expp(z)expp(w).
Similarly if z and w are nonzero elements of Cp then logp(zw) = logpz + logpw.
For z in the domain of expp, we have expp(logp(1+z)) = 1+z and logp(expp(z)) = z.
The roots of the Iwasawa logarithm logp(z) are exactly the elements of Cp of the form pr·ζ where r is a rational number and ζ is a root of unity. [4]
Note that there is no analogue in Cp of Euler's identity, e2πi = 1. This is a corollary of Strassmann's theorem.
Another major difference to the situation in C is that the domain of convergence of expp is much smaller than that of logp. A modified exponential function — the Artin–Hasse exponential — can be used instead which converges on |z|p < 1.
In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable is denoted or , with the two notations used interchangeably. It is called exponential because its argument can be seen as an exponent to which a constant number e ≈ 2.718, the base, is raised. There are several other definitions of the exponential function, which are all equivalent although being of very different nature.
In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
In mathematics, the logarithm to baseb is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x. When the base is clear from the context or is irrelevant it is sometimes written log x.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; often said as "b to the power n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: In particular, .
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:
In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series.
In the physical sciences, the Airy function (or Airy function of the first kind) Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation known as the Airy equation or the Stokes equation.
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:
In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though Knuth's up arrow notation and the left-exponent xb are common.
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.
In mathematics, the exponential integral Ei is a special function on the complex plane.
In mathematics, the Riesz function is an entire function defined by Marcel Riesz in connection with the Riemann hypothesis, by means of the power series
In mathematics, the Glaisher–Kinkelin constant or Glaisher's constant, typically denoted A, is a mathematical constant, related to special functions like the K-function and the Barnes G-function. The constant also appears in a number of sums and integrals, especially those involving the gamma function and the Riemann zeta function. It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin.
In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.
In mathematics, in the area of complex analysis, Nachbin's theorem is a result used to establish bounds on the growth rates for analytic functions. In particular, Nachbin's theorem may be used to give the domain of convergence of the generalized Borel transform, also called Nachbin summation.
In mathematics, the convolution power is the n-fold iteration of the convolution with itself. Thus if is a function on Euclidean space Rd and is a natural number, then the convolution power is defined by
In mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product