P-adic exponential function

Last updated

In mathematics, particularly p-adic analysis, the p-adic exponential function is a p-adic analogue of the usual exponential function on the complex numbers. As in the complex case, it has an inverse function, named the p-adic logarithm.

Contents

Definition

The usual exponential function on C is defined by the infinite series

Entirely analogously, one defines the exponential function on Cp, the completion of the algebraic closure of Qp, by

However, unlike exp which converges on all of C, expp only converges on the disc

This is because p-adic series converge if and only if the summands tend to zero, and since the n! in the denominator of each summand tends to make them large p-adically, a small value of z is needed in the numerator. It follows from Legendre's formula that if then tends to , p-adically.

Although the p-adic exponential is sometimes denoted ex, the number e itself has no p-adic analogue. This is because the power series expp(x) does not converge at x = 1. It is possible to choose a number e to be a p-th root of expp(p) for p ≠ 2, [lower-alpha 1] but there are multiple such roots and there is no canonical choice among them. [1]

p-adic logarithm function

The power series

converges for x in Cp satisfying |x|p < 1 and so defines the p-adic logarithm function logp(z) for |z  1|p < 1 satisfying the usual property logp(zw) = logpz + logpw. The function logp can be extended to all of C ×
p
 
(the set of nonzero elements of Cp) by imposing that it continues to satisfy this last property and setting logp(p) = 0. Specifically, every element w of C ×
p
 
can be written as w = pr·ζ·z with r a rational number, ζ a root of unity, and |z  1|p < 1, [2] in which case logp(w) = logp(z). [lower-alpha 2] This function on C ×
p
 
is sometimes called the Iwasawa logarithm to emphasize the choice of logp(p) = 0. In fact, there is an extension of the logarithm from |z  1|p < 1 to all of C ×
p
 
for each choice of logp(p) in Cp. [3]

Properties

If z and w are both in the radius of convergence for expp, then their sum is too and we have the usual addition formula: expp(z + w) = expp(z)expp(w).

Similarly if z and w are nonzero elements of Cp then logp(zw) = logpz + logpw.

For z in the domain of expp, we have expp(logp(1+z)) = 1+z and logp(expp(z)) = z.

The roots of the Iwasawa logarithm logp(z) are exactly the elements of Cp of the form pr·ζ where r is a rational number and ζ is a root of unity. [4]

Note that there is no analogue in Cp of Euler's identity, e2πi = 1. This is a corollary of Strassmann's theorem.

Another major difference to the situation in C is that the domain of convergence of expp is much smaller than that of logp. A modified exponential function the Artin–Hasse exponential can be used instead which converges on |z|p < 1.

Notes

  1. or a 4th root of exp2(4), for p = 2
  2. In factoring w as above, there is a choice of a root involved in writing pr since r is rational; however, different choices differ only by multiplication by a root of unity, which gets absorbed into the factor ζ.

Related Research Articles

<span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation, but modern definitions allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics".

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function f(z) has a root at w, then f(z) / (zw), taking the limit value at w, is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Logarithm</span> Inverse of the exponential function

In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number x to the base b is the exponent to which b must be raised, to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logbx, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.

<span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent.

<span class="mw-page-title-main">Exponentiation</span> Mathematical operation

In mathematics, exponentiation is an operation involving two numbers, the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

In mathematics, a Dirichlet series is any series of the form

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Tetration</span> Repeated exponentiation

In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though and the left-exponent xb are common.

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

<span class="mw-page-title-main">Exponential integral</span> Special function defined by an integral

In mathematics, the exponential integral Ei is a special function on the complex plane.

<span class="mw-page-title-main">Riesz function</span>

In mathematics, the Riesz function is an entire function defined by Marcel Riesz in connection with the Riemann hypothesis, by means of the power series

<span class="mw-page-title-main">Barnes G-function</span>

In mathematics, the Barnes G-functionG(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes. It can be written in terms of the double gamma function.

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.

In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.

In mathematics, in the area of complex analysis, Nachbin's theorem is commonly used to establish a bound on the growth rates for an analytic function. This article provides a brief review of growth rates, including the idea of a function of exponential type. Classification of growth rates based on type help provide a finer tool than big O or Landau notation, since a number of theorems about the analytic structure of the bounded function and its integral transforms can be stated. In particular, Nachbin's theorem may be used to give the domain of convergence of the generalized Borel transform, given below.

In mathematics, the convolution power is the n-fold iteration of the convolution with itself. Thus if is a function on Euclidean space Rd and is a natural number, then the convolution power is defined by

In mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product

References

  1. Robert 2000 , p. 252
  2. Cohen 2007 , Proposition 4.4.44
  3. Cohen 2007 , §4.4.11
  4. Cohen 2007 , Proposition 4.4.45