Inscribed angle

Last updated
The inscribed angle th circle.
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Central angle 2th
Inscribed angle th on major arc
Supplementary inscribed angle th on minor arc Inscribed angles2.svg
The inscribed angle θ circle.
   Central angle 2θ
  Inscribed angle θ on major arc
   Supplementary inscribed angle θ on minor arc

In geometry, an inscribed angle is the angle formed in the interior of a circle when two chords intersect on the circle. It can also be defined as the angle subtended at a point on the circle by two given points on the circle.

Contents

Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint.

The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle subtending the same arc.

The inscribed angle theorem appears as Proposition 20 on Book 3 of Euclid's Elements.

Theorem

Statement

For fixed points A and B, the set of points M in the plane for which the angle [?]AMB is equal to a is an arc of a circle. The measure of [?]AOB, where O is the center of the circle, is 2a. ArcCapable.gif
For fixed points A and B, the set of points M in the plane for which the angle AMB is equal to α is an arc of a circle. The measure of AOB, where O is the center of the circle, is 2α.

The inscribed angle theorem states that an angle θ inscribed in a circle is half of the central angle 2θ that subtends the same arc on the circle. Therefore, the angle does not change as its vertex is moved to different positions on the circle.

Proof

Inscribed angles where one chord is a diameter

Case: One chord is a diameter InscribedAngle 1ChordDiam.svg
Case: One chord is a diameter

Let O be the center of a circle, as in the diagram at right. Choose two points on the circle, and call them V and A. Draw line OV and extended past O so that it intersects the circle at point B which is diametrically opposite the point V. Draw an angle whose vertex is point V and whose sides pass through points A, B.

Draw line OA. Angle BOA is a central angle; call it θ. Lines OV and OA are both radii of the circle, so they have equal lengths. Therefore, triangle VOA is isosceles, so angle BVA (the inscribed angle) and angle VAO are equal; let each of them be denoted as ψ.

Angles BOA and AOV are supplementary, summing to a straight angle (180°), so angle AOV measures 180° θ.

The three angles of triangle VOA must sum to 180°:

Adding to both sides yields

Inscribed angles with the center of the circle in their interior

Case: Center interior to angle
ph0 = [?]DVC, th0 = [?]DOC
ph1 = [?]EVD, th1 = [?]EOD
ph2 = [?]EVC, th2 = [?]EOC Circle-angles-21add-inscribed.svg
Case: Center interior to angle
  φ0 = ∠DVC, θ0 = ∠DOC
  φ1 = ∠EVD, θ1 = ∠EOD
  φ2 = ∠EVC, θ2 = ∠EOC

Given a circle whose center is point O, choose three points V, C, D on the circle. Draw lines VC and VD: angle DVC is an inscribed angle. Now draw line OV and extend it past point O so that it intersects the circle at point E. Angle DVC subtends arc DC on the circle.

Suppose this arc includes point E within it. Point E is diametrically opposite to point V. Angles DVE, ∠EVC are also inscribed angles, but both of these angles have one side which passes through the center of the circle, therefore the theorem from the above Part 1 can be applied to them.

Therefore,

then let

so that

Draw lines OC and OD. Angle DOC is a central angle, but so are angles DOE and EOC, and

Let

so that

From Part One we know that and that . Combining these results with equation (2) yields

therefore, by equation (1),

Inscribed angles with the center of the circle in their exterior

Case: Center exterior to angle
ps0 = [?]DVC, th0 = [?]DOC
ps1 = [?]EVD, th1 = [?]EOD
ps2 = [?]EVC, th2 = [?]EOC InscribedAngle CenterCircleExtV2.svg
Case: Center exterior to angle
  ψ0 = ∠DVC, θ0 = ∠DOC
  ψ1 = ∠EVD, θ1 = ∠EOD
  ψ2 = ∠EVC, θ2 = ∠EOC

The previous case can be extended to cover the case where the measure of the inscribed angle is the difference between two inscribed angles as discussed in the first part of this proof.

Given a circle whose center is point O, choose three points V, C, D on the circle. Draw lines VC and VD: angle DVC is an inscribed angle. Now draw line OV and extend it past point O so that it intersects the circle at point E. Angle DVC subtends arc DC on the circle.

Suppose this arc does not include point E within it. Point E is diametrically opposite to point V. Angles EVD, ∠EVC are also inscribed angles, but both of these angles have one side which passes through the center of the circle, therefore the theorem from the above Part 1 can be applied to them.

Therefore,

.

then let

so that

Draw lines OC and OD. Angle DOC is a central angle, but so are angles EOD and EOC, and

Let

so that

From Part One we know that and that . Combining these results with equation (4) yields

therefore, by equation (3),


Animated gif of proof of the inscribed angle theorem. The large triangle that is inscribed in the circle gets subdivided into three smaller triangles, all of which are isosceles because their upper two sides are radii of the circle. Inside each isosceles triangle the pair of base angles are equal to each other, and are half of 180deg minus the apex angle at the circle's center. Adding up these isosceles base angles yields the theorem, namely that the inscribed angle, ps, is half the central angle, th. Animated gif of proof of the inscribed angle theorem.gif
Animated gif of proof of the inscribed angle theorem. The large triangle that is inscribed in the circle gets subdivided into three smaller triangles, all of which are isosceles because their upper two sides are radii of the circle. Inside each isosceles triangle the pair of base angles are equal to each other, and are half of 180° minus the apex angle at the circle's center. Adding up these isosceles base angles yields the theorem, namely that the inscribed angle, ψ, is half the central angle, θ.

Corollary

By a similar argument, the angle between a chord and the tangent line at one of its intersection points equals half of the central angle subtended by the chord. See also Tangent lines to circles.

Applications

Proof without words using the inscribed angle theorem that opposite angles of a cyclic quadrilateral are supplementary:
2 + 2 = 360deg [?]  +  = 180deg Cyclic quadrilateral supplementary angles visual proof.svg
Proof without words using the inscribed angle theorem that opposite angles of a cyclic quadrilateral are supplementary:
2𝜃 + 2𝜙 = 360° ∴ 𝜃 + 𝜙 = 180°

The inscribed angle theorem is used in many proofs of elementary Euclidean geometry of the plane. A special case of the theorem is Thales' theorem, which states that the angle subtended by a diameter is always 90°, i.e., a right angle. As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle. Further, it allows one to prove that when two chords intersect in a circle, the products of the lengths of their pieces are equal.

Inscribed angle theorems for ellipses, hyperbolas and parabolas

Inscribed angle theorems exist for ellipses, hyperbolas and parabolas, too. The essential differences are the measurements of an angle. (An angle is considered a pair of intersecting lines.)

Related Research Articles

<span class="mw-page-title-main">Angle</span> Figure formed by two rays meeting at a common point

In Euclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles formed by two rays are also known as plane angles as they lie in the plane that contains the rays. Angles are also formed by the intersection of two planes; these are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection.

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius.

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Thales's theorem</span> Angle formed by a point on a circle and the 2 ends of a diameter is a right angle

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

<span class="mw-page-title-main">Chord (geometry)</span> Geometric line segment whose endpoints both lie on the curve

A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta.

<span class="mw-page-title-main">Central angle</span> Measure of two radii meeting

A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one. The central angle is also known as the arc's angular distance. The arc length spanned by a central angle on a sphere is called spherical distance.

<span class="mw-page-title-main">Cissoid of Diocles</span> Cubic plane curve

In geometry, the cissoid of Diocles is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio. In particular, it can be used to double a cube. It can be defined as the cissoid of a circle and a line tangent to it with respect to the point on the circle opposite to the point of tangency. In fact, the curve family of cissoids is named for this example and some authors refer to it simply as the cissoid. It has a single cusp at the pole, and is symmetric about the diameter of the circle which is the line of tangency of the cusp. The line is an asymptote. It is a member of the conchoid of de Sluze family of curves and in form it resembles a tractrix.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle through the point at angle onto the line through the angles . Among these formulas are the following:

<span class="mw-page-title-main">Limb darkening</span> Optical effect seen at the edges of stars from an astronomers perspective

Limb darkening is an optical effect seen in stars and planets, where the central part of the disk appears brighter than the edge, or limb. Its understanding offered early solar astronomers an opportunity to construct models with such gradients. This encouraged the development of the theory of radiative transfer.

<span class="mw-page-title-main">Ptolemy's theorem</span> Relates the 4 sides and 2 diagonals of a quadrilateral with vertices on a common circle

In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral. The theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.

In physics, the optical theorem is a general law of wave scattering theory, which relates the zero-angle scattering amplitude to the total cross section of the scatterer. It is usually written in the form

<span class="mw-page-title-main">Strophoid</span> Geometric curve constructed from another curve and two points

In geometry, a strophoid is a curve generated from a given curve C and points A and O as follows: Let L be a variable line passing through O and intersecting C at K. Now let P1 and P2 be the two points on L whose distance from K is the same as the distance from A to K. The locus of such points P1 and P2 is then the strophoid of C with respect to the pole O and fixed point A. Note that AP1 and AP2 are at right angles in this construction.

<span class="mw-page-title-main">Circular arc</span> Part of a circle between two points

A circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians ; and the other arc, the major arc, subtends an angle greater than π radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a chord of a circle. If the length of an arc is exactly half of the circle, it is known as a semicircular arc.

There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

In fluid dynamics, Taylor scraping flow is a type of two-dimensional corner flow occurring when one of the wall is sliding over the other with constant velocity, named after G. I. Taylor.

<span class="mw-page-title-main">Grating lobes</span>

For discrete aperture antennas in which the element spacing is greater than a half wavelength, a spatial aliasing effect allows plane waves incident to the array from visible angles other than the desired direction to be coherently added, causing grating lobes. Grating lobes are undesirable and identical to the main lobe. The perceived difference seen in the grating lobes is because of the radiation pattern of non-isotropic antenna elements, which effects main and grating lobes differently. For isotropic antenna elements, the main and grating lobes are identical.

References