Bevan point

Last updated
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Reference triangle ^ABC
Excentral triangle ^MAMBMC of ^ABC
Circumcircle of ^MAMBMC (Bevan circle of ^ABC, centered at Bevan point M) Bevan punkt.svg
  Reference triangle ABC
   Excentral triangle MAMBMC of ABC
  Circumcircle of MAMBMC (Bevan circle of ABC, centered at Bevan pointM)
Reference triangle ^ABC
Excentral triangle ^MAMBMC of ^ABC
Bevan circle kM of ^ABC (centered at Bevan point M)
Euler line e, on which circumcenter O, orthocenter H, centroid G, and de Longchamps point L lie
Other points: incenter I, Nagel point N Bevan2 punkt.svg
  Reference triangle ABC
   Excentral triangle MAMBMC of ABC
  Bevan circlekM of ABC (centered at Bevan pointM)
   Euler line e, on which circumcenter O, orthocenter H, centroid G, and de Longchamps point L lie
Other points: incenter I, Nagel point N

In geometry, the Bevan point, named after Benjamin Bevan, is a triangle center. It is defined as center of the Bevan circle, that is the circle through the centers of the three excircles of a triangle.

The Bevan point of a triangle is the reflection of the incenter across the circumcenter of the triangle.

The Bevan point M of triangle ABC has the same distance from its Euler line e as its incenter I and the circumcenter O is the midpoint of the line segment MI. The length of MI is given by

where R denotes the radius of the circumcircle and a, b, c the sides of ABC. The Bevan is point is also the midpoint of the line segment NL connecting the Nagel point N and the de Longchamps point L. The radius of the Bevan circle is 2R, that is twice the radius of the circumcircle.


Related Research Articles

<span class="mw-page-title-main">Pedal triangle</span> Triangle found by projecting a point onto the sides of another triangle

In plane geometry, a pedal triangle is obtained by projecting a point onto the sides of a triangle.

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the side opposite the vertex. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

<span class="mw-page-title-main">Nine-point circle</span> Circle constructed from a triangle

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Orthocentric system</span> 4 planar points which are all orthocenters of triangles formed by the other 3

In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular, and the four circles passing through any three of the four points have the same radius.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Euler line</span> Line constructed from a triangle

In geometry, the Euler line, named after Leonhard Euler, is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear. In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

<span class="mw-page-title-main">Medial triangle</span> Triangle defined from the midpoints of the sides of another triangle

In Euclidean geometry, the medial triangle or midpoint triangle of a triangle ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of ABC.

<span class="mw-page-title-main">Nine-point center</span> Triangle center associated with the nine-point circle

In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle that passes through nine significant points of the triangle: the midpoints of the three edges, the feet of the three altitudes, and the points halfway between the orthocenter and each of the three vertices. The nine-point center is listed as point X(5) in Clark Kimberling's Encyclopedia of Triangle Centers.

<span class="mw-page-title-main">Brocard points</span> Special points within a triangle

In geometry, Brocard points are special points within a triangle. They are named after Henri Brocard (1845–1922), a French mathematician.

<span class="mw-page-title-main">Johnson circles</span> Geometric theorem regarding 3 circles intersecting at a point

In geometry, a set of Johnson circles comprises three circles of equal radius r sharing one common point of intersection H. In such a configuration the circles usually have a total of four intersections : the common point H that they all share, and for each of the three pairs of circles one more intersection point. If any two of the circles happen to osculate, they only have H as a common point, and it will then be considered that H be their 2-wise intersection as well; if they should coincide we declare their 2-wise intersection be the point diametrically opposite H. The three 2-wise intersection points define the reference triangle of the figure. The concept is named after Roger Arthur Johnson.

de Longchamps point Orthocenter of a triangles anticomplementary triangle

In geometry, the de Longchamps point of a triangle is a triangle center named after French mathematician Gaston Albert Gohierre de Longchamps. It is the reflection of the orthocenter of the triangle about the circumcenter.

In geometry, the incenter–excenter lemma is the theorem that the line segment between the incenter and any excenter of a triangle, or between two excenters, is the diameter of a circle also passing through two triangle vertices with its center on the circumcircle. This theorem is best known in Russia, where it is called the trillium theorem or trident lemma, based on the geometric figure's resemblance to a trillium flower or trident; these names have sometimes also been adopted in English.

<span class="mw-page-title-main">Fuhrmann triangle</span> Special triangle based on arbitrary triangle

The Fuhrmann triangle, named after Wilhelm Fuhrmann (1833–1904), is special triangle based on a given arbitrary triangle.

<span class="mw-page-title-main">Mixtilinear incircles of a triangle</span> Circle tangent to two sides of a triangle and its circumcircle

In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex.

<span class="mw-page-title-main">Modern triangle geometry</span>

In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid. In fact, Euclid's Elements contains description of the four special points – centroid, incenter, circumcenter and orthocenter - associated with a triangle. Even though Pascal and Ceva in the seventeenth century, Euler in the eighteenth century and Feuerbach in the nineteenth century and many other mathematicians had made important discoveries regarding the properties of the triangle, it was the publication in 1873 of a paper by Emile Lemoine (1840–1912) with the title "On a remarkable point of the triangle" that was considered to have, according to Nathan Altschiller-Court, "laid the foundations...of the modern geometry of the triangle as a whole." The American Mathematical Monthly, in which much of Lemoine's work is published, declared that "To none of these [geometers] more than Émile-Michel-Hyacinthe Lemoine is due the honor of starting this movement of modern triangle geometry". The publication of this paper caused a remarkable upsurge of interest in investigating the properties of the triangle during the last quarter of the nineteenth century and the early years of the twentieth century. A hundred-page article on triangle geometry in Klein's Encyclopedia of Mathematical Sciences published in 1914 bears witness to this upsurge of interest in triangle geometry.

<span class="mw-page-title-main">Pedal circle</span>

The pedal circle of the a triangle and a point in the plane is a special circle determined by those two entities. More specifically for the three perpendiculars through the point onto the three (extended) triangle sides you get three points of intersection and the circle defined by those three points is the pedal circle. By definition the pedal circle is the circumcircle of the pedal triangle.