Vecten points

Last updated
Vecten points Vectenpoints.svg
Vecten points

In the geometry of triangles, the Vecten points are two triangle centers associated with any triangle. They may be constructed by constructing three squares on the sides of the triangle, connecting each square centre by a line to the opposite triangle point, and finding the point where these three lines meet. The outer and inner Vecten points differ according to whether the squares are extended outward from the triangle sides, or inward.

Contents

The Vecten points are named after an early 19th-century French mathematician named Vecten, who taught mathematics with Gergonne in Nîmes and published a study of the figure of three squares on the sides of a triangle in 1817. [1]

Outer Vecten point

Let ABC be any given plane triangle. On the sides BC, CA, AB of the triangle, construct outwardly drawn three squares with centres respectively. Then the lines and are concurrent. The point of concurrence is the outer Vecten point of the triangle ABC.

In Clark Kimberling's Encyclopedia of Triangle Centers, the outer Vecten point is denoted by X(485). [2]

Inner Vecten point

Let ABC be any given plane triangle. On the sides BC, CA, AB of the triangle, construct inwardly drawn three squares respectively with centres respectively. Then the lines and are concurrent. The point of concurrence is the inner Vecten point of the triangle ABC.

In Clark Kimberling's Encyclopedia of Triangle Centers, the inner Vecten point is denoted by X(486). [2]

The line meets the Euler line at the Nine point center of the triangle . The Vecten points lie on the Kiepert hyperbola

See also

Related Research Articles

<span class="mw-page-title-main">Centroid</span> Mean ("average") position of all the points in a shape

In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in n-dimensional Euclidean space.

<span class="mw-page-title-main">Euler line</span> Line constructed from a triangle

In geometry, the Euler line, named after Leonhard Euler, is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

<span class="mw-page-title-main">Feuerbach point</span> Point where the incircle and nine-point circle of a triangle are tangent

In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach.

<span class="mw-page-title-main">Isodynamic point</span>

In Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations. A triangle that is itself equilateral has a unique isodynamic point, at its centroid(as well as its orthocenter, its incenter, and its circumcenter, which are concurrent); every non-equilateral triangle has two isodynamic points. Isodynamic points were first studied and named by Joseph Neuberg (1885).

In geometry, a triangle center is a point in the plane that is in some sense a center of a triangle akin to the centers of squares and circles, that is, a point that is in the middle of the figure by some measure. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

de Longchamps point

In geometry, the de Longchamps point of a triangle is a triangle center named after French mathematician Gaston Albert Gohierre de Longchamps. It is the reflection of the orthocenter of the triangle about the circumcenter.

In geometry, Napoleon points are a pair of special points associated with a plane triangle. It is generally believed that the existence of these points was discovered by Napoleon Bonaparte, the Emperor of the French from 1804 to 1815, but many have questioned this belief. The Napoleon points are triangle centers and they are listed as the points X(17) and X(18) in Clark Kimberling's Encyclopedia of Triangle Centers.

In geometry, the Spieker center is a special point associated with a plane triangle. It is defined as the center of mass of the perimeter of the triangle. The Spieker center of a triangle ABC is the center of gravity of a homogeneous wire frame in the shape of triangle ABC. The point is named in honor of the 19th-century German geometer Theodor Spieker. The Spieker center is a triangle center and it is listed as the point X(10) in Clark Kimberling's Encyclopedia of Triangle Centers.

In triangle geometry, the Apollonius point is a special point associated with a plane triangle. The point is a triangle center and it is designated as X(181) in Clark Kimberling's Encyclopedia of Triangle Centers (ETC). The Apollonius center is also related to the Apollonius problem.

In geometry, the Exeter point is a special point associated with a plane triangle. The Exeter point is a triangle center and is designated as the center X(22) in Clark Kimberling's Encyclopedia of Triangle Centers. This was discovered in a computers-in-mathematics workshop at Phillips Exeter Academy in 1986. This is one of the recent triangle centers, unlike the classical triangle centers like centroid, incenter, and Steiner point.

<span class="mw-page-title-main">Morley centers</span>

In geometry the Morley centers are two special points associated with a plane triangle. Both of them are triangle centers. One of them called first Morley center is designated as X(356) in Clark Kimberling's Encyclopedia of Triangle Centers, while the other point called second Morley center is designated as X(357). The two points are also related to Morley's trisector theorem which was discovered by Frank Morley in around 1899.

In geometry the Gossard perspector is a special point associated with a plane triangle. It is a triangle center and it is designated as X(402) in Clark Kimberling's Encyclopedia of Triangle Centers. The point was named Gossard perspector by John Conway in 1998 in honour of Harry Clinton Gossard who discovered its existence in 1916. Later it was learned that the point had appeared in an article by Christopher Zeeman published during 1899 – 1902. From 2003 onwards the Encyclopedia of Triangle Centers has been referring to this point as Zeeman–Gossard perspector.

In geometry, central lines are certain special straight lines that lie in the plane of a triangle. The special property that distinguishes a straight line as a central line is manifested via the equation of the line in trilinear coordinates. This special property is related to the concept of triangle center also. The concept of a central line was introduced by Clark Kimberling in a paper published in 1994.

<span class="mw-page-title-main">Kosnita's theorem</span> Concurrency of lines connecting to certain circles associated with an arbitrary triangle

In Euclidean geometry, Kosnita's theorem is a property of certain circles associated with an arbitrary triangle.

<span class="mw-page-title-main">Musselman's theorem</span> About a common point of certain circles defined by an arbitrary triangle

In Euclidean geometry, Musselman's theorem is a property of certain circles defined by an arbitrary triangle.

<span class="mw-page-title-main">Clawson point</span>

The Clawson point is a special point in a planar triangle defined by the trilinear coordinates , where are the interior angles at the triangle vertices . It is named after John Wentworth Clawson, who published it 1925 in the American Mathematical Monthly.

<span class="mw-page-title-main">Feuerbach hyperbola</span>

In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Shiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle.

In mathematics, in triangle geometry, Neuberg cubic is a special cubic plane curve in the plane of the reference triangle having several remarkable properties. It is a triangle cubic in that it is associated with the reference triangle. It is named after Joseph Jean Baptiste Neuberg, a Luxembourger mathematician, who first introduced the curve in a paper published in 1884. The curve appears as the first item, with identification number K001, in Bernard Gilbert's Catalogue of Triangle Cubics which is a compilation of extensive information about more than 1200 triangle cubics.

<span class="mw-page-title-main">Modern triangle geometry</span>

In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid. In fact, Euclid's Elements contains description of the four special points – centroid, incenter, circumcenter and orthocenter - associated with a triangle. Even though Pascal and Ceva in the seventeenth century, Euler in the eighteenth century and Feuerbach in the nineteenth century and many other mathematicians had made important discoveries regarding the properties of the triangle, it was the publication in 1873 of a paper by Emile Lemoine (1840–1912) with the title "On a remarkable point of the triangle" that was considered to have, according to Nathan Altschiller-Court, "laid the foundations...of the modern geometry of the triangle as a whole." The American Mathematical Monthly, in which much of Lemoine's work is published, declared that "To none of these [geometers] more than Émile-Michel-Hyacinthe Lemoine is due the honor of starting this movement of modern triangle geometry". The publication of this paper caused a remarkable upsurge of interest in investigating the properties of the triangle during the last quarter of the nineteenth century and the early years of the twentieth century. A hundred-page article on triangle geometry in Klein's Encyclopedia of Mathematical Sciences published in 1914 bears witness to this upsurge of interest in triangle geometry.

References

  1. Ayme, Jean-Louis, La Figure de Vecten (PDF), retrieved 2014-11-04.
  2. 1 2 Kimberling, Clark. "Encyclopedia of Triangle Centers".