Central triangle

Last updated

In geometry, a central triangle is a triangle in the plane of the reference triangle. The trilinear coordinates of its vertices relative to the reference triangle are expressible in a certain cyclical way in terms of two functions having the same degree of homogeneity. At least one of the two functions must be a triangle center function. The excentral triangle is an example of a central triangle. The central triangles have been classified into three types based on the properties of the two functions.

Contents

Definition

Triangle center function

A triangle center function is a real valued function of three real variables u, v, w having the following properties:

  • Homogeneity property: for some constant n and for all t > 0. The constant n is the degree of homogeneity of the function
  • Bisymmetry property:

Central triangles of Type 1

Let and be two triangle center functions, not both identically zero functions, having the same degree of homogeneity. Let a, b, c be the side lengths of the reference triangle ABC. An (f, g)-central triangle of Type 1 is a triangle A'B'C' the trilinear coordinates of whose vertices have the following form: [1] [2]

Central triangles of Type 2

Let be a triangle center function and be a function function satisfying the homogeneity property and having the same degree of homogeneity as but not satisfying the bisymmetry property. An (f, g)-central triangle of Type 2 is a triangle A'B'C' the trilinear coordinates of whose vertices have the following form: [1]

Central triangles of Type 3

Let be a triangle center function. An g-central triangle of Type 3 is a triangle A'B'C' the trilinear coordinates of whose vertices have the following form: [1]

This is a degenerate triangle in the sense that the points A', B', C' are collinear.

Special cases

If f = g, the (f, g)-central triangle of Type 1 degenerates to the triangle center A'. All central triangles of both Type 1 and Type 2 relative to an equilateral triangle degenerate to a point.

Examples

Type 1

Type 2

Related Research Articles

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the side opposite the vertex. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Medial triangle</span> Triangle defined from the midpoints of the sides of another triangle

In Euclidean geometry, the medial triangle or midpoint triangle of a triangle ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of ABC.

<span class="mw-page-title-main">Brocard points</span> Special points within a triangle

In geometry, Brocard points are special points within a triangle. They are named after Henri Brocard (1845–1922), a French mathematician.

In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.

<span class="mw-page-title-main">Extouch triangle</span> Triangle formed from the points of tangency of a given triangles excircles

In Euclidean geometry, the extouch triangle of a triangle is formed by joining the points at which the three excircles touch the triangle.

<span class="mw-page-title-main">Triangle center</span> Point in a triangle that can be seen as its middle under some criteria

In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

<span class="mw-page-title-main">Steiner ellipse</span> Circumellipse of a triangle whose center is the triangles centroid

In geometry, the Steiner ellipse of a triangle, also called the Steiner circumellipse to distinguish it from the Steiner inellipse, is the unique circumellipse whose center is the triangle's centroid. Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.

In geometry, Napoleon points are a pair of special points associated with a plane triangle. It is generally believed that the existence of these points was discovered by Napoleon Bonaparte, the Emperor of the French from 1804 to 1815, but many have questioned this belief. The Napoleon points are triangle centers and they are listed as the points X(17) and X(18) in Clark Kimberling's Encyclopedia of Triangle Centers.

In plane geometry, a Hofstadter point is a special point associated with every plane triangle. In fact there are several Hofstadter points associated with a triangle. All of them are triangle centers. Two of them, the Hofstadter zero-point and Hofstadter one-point, are particularly interesting. They are two transcendental triangle centers. Hofstadter zero-point is the center designated as X(360) and the Hofstafter one-point is the center denoted as X(359) in Clark Kimberling's Encyclopedia of Triangle Centers. The Hofstadter zero-point was discovered by Douglas Hofstadter in 1992.

In triangle geometry, the Steiner point is a particular point associated with a triangle. It is a triangle center and it is designated as the center X(99) in Clark Kimberling's Encyclopedia of Triangle Centers. Jakob Steiner (1796–1863), Swiss mathematician, described this point in 1826. The point was given Steiner's name by Joseph Neuberg in 1886.

In geometry, the Exeter point is a special point associated with a plane triangle. It is a triangle center and is designated as X(22) in Clark Kimberling's Encyclopedia of Triangle Centers. This was discovered in a computers-in-mathematics workshop at Phillips Exeter Academy in 1986. This is one of the recent triangle centers, unlike the classical triangle centers like centroid, incenter, and Steiner point.

In geometry, the Yff center of congruence is a special point associated with a triangle. This special point is a triangle center and Peter Yff initiated the study of this triangle center in 1987.

In geometry, the equal parallelians point is a special point associated with a plane triangle. It is a triangle center and it is denoted by X(192) in Clark Kimberling's Encyclopedia of Triangle Centers. There is a reference to this point in one of Peter Yff's notebooks, written in 1961.

In geometry, central lines are certain special straight lines that lie in the plane of a triangle. The special property that distinguishes a straight line as a central line is manifested via the equation of the line in trilinear coordinates. This special property is related to the concept of triangle center also. The concept of a central line was introduced by Clark Kimberling in a paper published in 1994.

In Euclidean geometry, trilinear polarity is a certain correspondence between the points in the plane of a triangle not lying on the sides of the triangle and lines in the plane of the triangle not passing through the vertices of the triangle. "Although it is called a polarity, it is not really a polarity at all, for poles of concurrent lines are not collinear points." It was Jean-Victor Poncelet (1788–1867), a French engineer and mathematician, who introduced the idea of the trilinear polar of a point in 1865.

In Euclidean geometry, the Clawson point is a special point in a triangle defined by the trilinear coordinates tan α : tan β : tan γ, where α, β, γ are the interior angles at the triangle vertices A, B, C. It is named after John Wentworth Clawson, who published it 1925 in the American Mathematical Monthly. It is denoted X(19) in Clark Kimberling's Encyclopedia of Triangle Centers.

In Euclidean geometry, a circumcevian triangle is a special triangle associated with a reference triangle and a point in the plane of the triangle. It is also associated with the circumcircle of the reference triangle.

<span class="mw-page-title-main">Modern triangle geometry</span>

In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid. In fact, Euclid's Elements contains description of the four special points – centroid, incenter, circumcenter and orthocenter - associated with a triangle. Even though Pascal and Ceva in the seventeenth century, Euler in the eighteenth century and Feuerbach in the nineteenth century and many other mathematicians had made important discoveries regarding the properties of the triangle, it was the publication in 1873 of a paper by Emile Lemoine (1840–1912) with the title "On a remarkable point of the triangle" that was considered to have, according to Nathan Altschiller-Court, "laid the foundations...of the modern geometry of the triangle as a whole." The American Mathematical Monthly, in which much of Lemoine's work is published, declared that "To none of these [geometers] more than Émile-Michel-Hyacinthe Lemoine is due the honor of starting this movement of modern triangle geometry". The publication of this paper caused a remarkable upsurge of interest in investigating the properties of the triangle during the last quarter of the nineteenth century and the early years of the twentieth century. A hundred-page article on triangle geometry in Klein's Encyclopedia of Mathematical Sciences published in 1914 bears witness to this upsurge of interest in triangle geometry.

In triangle geometry, the Kiepert conics are two special conics associated with the reference triangle. One of them is a hyperbola, called the Kiepert hyperbola and the other is a parabola, called the Kiepert parabola. The Kiepert conics are defined as follows:

References

  1. 1 2 3 Weisstein, Eric W. "Central Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 17 December 2021.
  2. Kimberling, C (1998). "Triangle Centers and Central Triangles". Congressus Numerantium. A Conference Journal on Numerical Themes. 129. 129.
  3. Weisstein, Eric W. "Cevian Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  4. Weisstein, Eric W. "Anticevian Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  5. Weisstein, Eric W. "Lucas Central Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  6. Weisstein, Eric W. "Pedal Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  7. Weisstein, Eric W. "Yff Central Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.