Parry point (triangle)

Last updated

In geometry, the Parry point is a special point associated with a plane triangle. It is the triangle center designated X(111) in Clark Kimberling's Encyclopedia of Triangle Centers. The Parry point and Parry circle are named in honor of the English geometer Cyril Parry, who studied them in the early 1990s. [1]

Contents

Parry circle

.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Reference triangle ^ABC
Circumcircle of ^ABC
Apollonian circles (intersect at the isodynamic points J, K)
Parry circle (through J, K and centroid G)
The Parry circle intersects the circumcircle at two points: the focus of the Kiepert parabola, and the Parry point. Parry point.svg
  Reference triangle ABC
  Circumcircle of ABC
   Apollonian circles (intersect at the isodynamic points J, K)
  Parry circle (through J, K and centroid G)
The Parry circle intersects the circumcircle at two points: the focus of the Kiepert parabola, and the Parry point.

Let ABC be a plane triangle. The circle through the centroid and the two isodynamic points of ABC is called the Parry circle of ABC. The equation of the Parry circle in barycentric coordinates is [2]

The center of the Parry circle is also a triangle center. It is the center designated as X(351) in the Encyclopedia of Triangle Centers. The trilinear coordinates of the center of the Parry circle are

Parry point

The Parry circle and the circumcircle of triangle ABC intersect in two points. One of them is a focus of the Kiepert parabola of ABC. [3] The other point of intersection is called the Parry point of ABC.

The trilinear coordinates of the Parry point are

The point of intersection of the Parry circle and the circumcircle of ABC which is a focus of the Kiepert hyperbola of ABC is also a triangle center and it is designated as X(110) in Encyclopedia of Triangle Centers. The trilinear coordinates of this triangle center are

See also

Related Research Articles

<span class="mw-page-title-main">Nine-point circle</span> Circle constructed from a triangle

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

<span class="mw-page-title-main">Orthocenter</span> Intersection of triangle altitudes

The orthocenter of a triangle, usually denoted by H, is the point where the three altitudes intersect. The orthocenter lies inside the triangle if and only if the triangle is acute. For a right triangle, the orthocenter coincides with the vertex at the right angle.

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Euler line</span> Line constructed from a triangle

In geometry, the Euler line, named after Leonhard Euler, is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

<span class="mw-page-title-main">Feuerbach point</span> Point where the incircle and nine-point circle of a triangle are tangent

In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach.

<span class="mw-page-title-main">Cubic plane curve</span> Type of a mathematical curve

In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation

<span class="mw-page-title-main">Morley's trisector theorem</span> 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Trilinear coordinates</span> Coordinate system based on distances from the sidelines of a given triangle

In geometry, the trilinear coordinatesx : y : z of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z : x and vertices C and A.

In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.

<span class="mw-page-title-main">Triangle center</span> Point in a triangle that can be seen as its middle under some criteria

In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

In geometry, Napoleon points are a pair of special points associated with a plane triangle. It is generally believed that the existence of these points was discovered by Napoleon Bonaparte, the Emperor of the French from 1804 to 1815, but many have questioned this belief. The Napoleon points are triangle centers and they are listed as the points X(17) and X(18) in Clark Kimberling's Encyclopedia of Triangle Centers.

In geometry, the Spieker center is a special point associated with a plane triangle. It is defined as the center of mass of the perimeter of the triangle. The Spieker center of a triangle ABC is the center of gravity of a homogeneous wire frame in the shape of ABC. The point is named in honor of the 19th-century German geometer Theodor Spieker. The Spieker center is a triangle center and it is listed as the point X(10) in Clark Kimberling's Encyclopedia of Triangle Centers.

In triangle geometry, the Steiner point is a particular point associated with a triangle. It is a triangle center and it is designated as the center X(99) in Clark Kimberling's Encyclopedia of Triangle Centers. Jakob Steiner (1796–1863), Swiss mathematician, described this point in 1826. The point was given Steiner's name by Joseph Neuberg in 1886.

In geometry, central lines are certain special straight lines that lie in the plane of a triangle. The special property that distinguishes a straight line as a central line is manifested via the equation of the line in trilinear coordinates. This special property is related to the concept of triangle center also. The concept of a central line was introduced by Clark Kimberling in a paper published in 1994.

<span class="mw-page-title-main">Feuerbach hyperbola</span> Unique curve associated with every triangle

In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle.

<span class="mw-page-title-main">Mixtilinear incircles of a triangle</span> Circle tangent to two sides of a triangle and its circumcircle

In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex.

In Euclidean geometry, a triangle conic is a conic in the plane of the reference triangle and associated with it in some way. For example, the circumcircle and the incircle of the reference triangle are triangle conics. Other examples are the Steiner ellipse, which is an ellipse passing through the vertices and having its centre at the centroid of the reference triangle; the Kiepert hyperbola which is a conic passing through the vertices, the centroid and the orthocentre of the reference triangle; and the Artzt parabolas, which are parabolas touching two sidelines of the reference triangle at vertices of the triangle.

<span class="mw-page-title-main">Modern triangle geometry</span>

In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid. In fact, Euclid's Elements contains description of the four special points – centroid, incenter, circumcenter and orthocenter - associated with a triangle. Even though Pascal and Ceva in the seventeenth century, Euler in the eighteenth century and Feuerbach in the nineteenth century and many other mathematicians had made important discoveries regarding the properties of the triangle, it was the publication in 1873 of a paper by Emile Lemoine (1840–1912) with the title "On a remarkable point of the triangle" that was considered to have, according to Nathan Altschiller-Court, "laid the foundations...of the modern geometry of the triangle as a whole." The American Mathematical Monthly, in which much of Lemoine's work is published, declared that "To none of these [geometers] more than Émile-Michel-Hyacinthe Lemoine is due the honor of starting this movement of modern triangle geometry". The publication of this paper caused a remarkable upsurge of interest in investigating the properties of the triangle during the last quarter of the nineteenth century and the early years of the twentieth century. A hundred-page article on triangle geometry in Klein's Encyclopedia of Mathematical Sciences published in 1914 bears witness to this upsurge of interest in triangle geometry.

In triangle geometry, the Kiepert conics are two special conics associated with the reference triangle. One of them is a hyperbola, called the Kiepert hyperbola and the other is a parabola, called the Kiepert parabola. The Kiepert conics are defined as follows:

References

  1. Kimberling, Clark. "Parry point" . Retrieved 29 May 2012.
  2. Yiu, Paul (2010). "The Circles of Lester, Evans, Parry, and Their Generalizations" (PDF). Forum Geometricorum. 10: 175–209. Archived from the original (PDF) on 7 October 2021. Retrieved 29 May 2012.
  3. Weisstein, Eric W. "Parry Point". MathWorld—A Wolfram Web Resource. Retrieved 29 May 2012.