A planar lamina is defined as a figure (a closed set) D of a finite area in a plane, with some mass m.[2]
This is useful in calculating moments of inertia or center of mass for a constant density, because the mass of a lamina is proportional to its area. In a case of a variable density, given by some (non-negative) surface density function the mass of the planar lamina D is a planar integral of ρ over the figure:[3]
Properties
The center of mass of the lamina is at the point
where is the moment of the entire lamina about the y-axis and is the moment of the entire lamina about the x-axis:
with summation and integration taken over a planar domain .
Example
Find the center of mass of a lamina with edges given by the lines and where the density is given as .
For this the mass must be found as well as the moments and .
Mass is which can be equivalently expressed as an iterated integral:
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.