Regular map (graph theory)

Last updated
The hexagonal hosohedron, a regular map on the sphere with two vertices, six edges, six faces, and 24 flags. Hexagonal Hosohedron.svg
The hexagonal hosohedron, a regular map on the sphere with two vertices, six edges, six faces, and 24 flags.
The regular map {6,3}4,0 on the torus with 16 faces, 32 vertices and 48 edges. Regmap-6340.png
The regular map {6,3}4,0 on the torus with 16 faces, 32 vertices and 48 edges.

In mathematics, a regular map is a symmetric tessellation of a closed surface. More precisely, a regular map is a decomposition of a two-dimensional manifold (such as a sphere, torus, or real projective plane) into topological disks such that every flag (an incident vertex-edge-face triple) can be transformed into any other flag by a symmetry of the decomposition. Regular maps are, in a sense, topological generalizations of Platonic solids. The theory of maps and their classification is related to the theory of Riemann surfaces, hyperbolic geometry, and Galois theory. Regular maps are classified according to either: the genus and orientability of the supporting surface, the underlying graph, or the automorphism group.

Contents

Overview

Regular maps are typically defined and studied in three ways: topologically, group-theoretically, and graph-theoretically.

Topological approach

Topologically, a map is a 2-cell decomposition of a compact connected 2-manifold. [1]

The genus g, of a map M is given by Euler's relation which is equal to if the map is orientable, and if the map is non-orientable. It is a crucial fact that there is a finite (non-zero) number of regular maps for every orientable genus except the torus.

Group-theoretical approach

Group-theoretically, the permutation representation of a regular map M is a transitive permutation group  C, on a set of flags, generated by three fixed-point free involutions r0, r1, r2 satisfying (r0r2)2= I. In this definition the faces are the orbits of F = <r0, r1>, edges are the orbits of E = <r0, r2>, and vertices are the orbits of V = <r1, r2>. More abstractly, the automorphism group of any regular map is the non-degenerate, homomorphic image of a <2,m,n>-triangle group.

Graph-theoretical approach

Graph-theoretically, a map is a cubic graph with edges coloured blue, yellow, red such that: is connected, every vertex is incident to one edge of each colour, and cycles of edges not coloured yellow have length 4. Note that is the flag graph or graph-encoded map (GEM) of the map, defined on the vertex set of flags and is not the skeleton G = (V,E) of the map. In general, || = 4|E|.

A map M is regular if Aut(M) acts regularly on the flags. Aut(M) of a regular map is transitive on the vertices, edges, and faces of M. A map M is said to be reflexible iff Aut(M) is regular and contains an automorphism that fixes both a vertex v and a face f, but reverses the order of the edges. A map which is regular but not reflexible is said to be chiral.

Examples

The hemicube, a regular map. Hemicube.svg
The hemicube, a regular map.

The following is a complete list of regular maps in surfaces of positive Euler characteristic, χ: the sphere and the projective plane. [2]

χ g Schläfli Vert.EdgesFacesGroup Order GraphNotes
20{p,2}pp2 C2 × Dih p4p Cp Undirected 6 cycle.svg Dihedron
20{2,p}2ppC2 × Dihp4pp-fold K2 Hosohedron
20{3,3}464 S 424 K4 3-simplex graph.svg Tetrahedron
20{4,3}8126C2 × S448 K4 × K2 3-cube column graph.svg Cube
20{3,4}6128C2 × S448 K2,2,2 Complex tripartite graph octahedron.svg Octahedron
20{5,3}203012C2 × A 5120 Dodecahedron H3 projection.svg Dodecahedron
20{3,5}123020C2 × A5120 K6 × K2 Icosahedron A2 projection.svg Icosahedron
1n1{2p,2}/2pp1Dih2p4p Cp Undirected 6 cycle.svg Hemi-dihedron [3]
1n1{2,2p}/22ppDih2p4pp-fold K2 Hemi-hosohedron [3]
1n1{4,3}/2463S424 K4 3-simplex graph.svg Hemicube
1n1{3,4}/2364S4242-fold K3 Hemioctahedron
1n1{5,3}/210156A560 Petersen graph Petersen1 tiny.svg Hemidodecahedron
1n1{3,5}/261510A560 K6 5-simplex graph.svg Hemi-icosahedron

The images below show three of the 20 regular maps in the triple torus, labelled with their Schläfli types.

Toroidal polyhedra

Example visualized as nets
Regular map 4-4 1-0.png
{4,4}1,0
(v:1, e:2, f:1)
Regular map 4-4 1-1.png
{4,4}1,1
(v:2, e:4, f:2)
Regular map 4-4 2-0.png
{4,4}2,0
(v:4, e:8, f:4)
Regular map 4-4 2-1.png
{4,4}2,1
(v:5, e:10, f:5)
Regular map 4-4 2-2.png
{4,4}2,2
(v:8, e:16, f:8)
Regular map 3-6 1-0.png
{3,6}1,0
(v:1, e:3, f:2)
Regular map 3-6 1-1.png
{3,6}1,1
(v:3, e:9, f:6)
Regular map 3-6 2-0.png
{3,6}2,0
(v:4, e:12, f:8)
Regular map 3-6 2-1.png
{3,6}2,1
(v:7, e:21, f:14)
Regular map 3-6 2-2.png
{3,6}2,2
(v:12, e:36, f:24)
Regular map 6-3 1-0.png
{6,3}1,0
(v:2, e:3, f:1)
Regular map 6-3 1-1.png
{6,3}1,1
(v:6, e:9, f:3)
Regular map 6-3 2-0.png
{6,3}2,0
(v:8, e:12, f:4)
Regular map 6-3 2-1.png
{6,3}2,1
(v:14, e:21, f:7)
Regular map 6-3 2-2.png
{6,3}2,2
(v:24, e:36, f:12)

Regular maps exist as torohedral polyhedra as finite portions of Euclidean tilings, wrapped onto the surface of a duocylinder as a flat torus. These are labeled {4,4}b,c for those related to the square tiling, {4,4}. [4] {3,6}b,c are related to the triangular tiling, {3,6}, and {6,3}b,c related to the hexagonal tiling, {6,3}. b and c are whole numbers. [5] There are 2 special cases (b,0) and (b,b) with reflective symmetry, while the general cases exist in chiral pairs (b,c) and (c,b).

Regular maps of the form {4,4}m,0 can be represented as the finite regular skew polyhedron {4,4 | m}, seen as the square faces of a m×m duoprism in 4-dimensions.

Here's an example {4,4}8,0 mapped from a plane as a chessboard to a cylinder section to a torus. The projection from a cylinder to a torus distorts the geometry in 3 dimensions, but can be done without distortion in 4-dimensions.

Torus from rectangle.gif
Regular maps with zero Euler characteristic [6]
χ g Schläfli Vert.EdgesFacesGroup Order Notes
01{4,4}b,0
n=b2
n2nn[4,4](b,0)8nFlat toroidal polyhedra
Same as {4,4 |b}
01{4,4}b,b
n=2b2
n2nn[4,4](b,b)8nFlat toroidal polyhedra
Same as rectified {4,4 |b}
01{4,4}b,c
n=b2+c2
n2nn[4,4]+
(b,c)
4nFlat chiral toroidal polyhedra
01{3,6}b,0
t=b2
t3t2t[3,6](b,0)12tFlat toroidal polyhedra
01{3,6}b,b
t=3b2
t3t2t[3,6](b,b)12tFlat toroidal polyhedra
01{3,6}b,c
t=b2+bc+c2
t3t2t[3,6]+
(b,c)
6tFlat chiral toroidal polyhedra
01{6,3}b,0
t=b2
2t3tt[3,6](b,0)12tFlat toroidal polyhedra
01{6,3}b,b
t=3b2
2t3tt[3,6](b,b)12tFlat toroidal polyhedra
01{6,3}b,c
t=b2+bc+c2
2t3tt[3,6]+
(b,c)
6tFlat chiral toroidal polyhedra

In generally regular toroidal polyhedra {p,q}b,c can be defined if either p or q are even, although only euclidean ones above can exist as toroidal polyhedra in 4-dimensions. In {2p,q}, the paths (b,c) can be defined as stepping face-edge-face in straight lines, while the dual {p,2q} forms will see the paths (b,c) as stepping vertex-edge-vertex in straight lines.

Hyperbolic regular maps

Octahedron 4 petrie polygons.png Regular map 6 4-3 pattern.png
The map {6,4}3 can be seen as {6,4}4,0. Following opposite edges will traverse all 4 hexagons in sequence. It exists in the petrial octahedron, {3,4}π with 6 vertices, 12 edges and 4 skew hexagon faces.
Branko Grunbaum identified a double-covered cube {8/2,3}, with 6 octagonal faces, double wrapped, needing 24 edges, and 16 vertices. It can be seen as regular map {8,3}2,0 on a hyperbolic plane with 6 colored octagons. Double-cube-regular-map.png
Branko Grünbaum identified a double-covered cube {8/2,3}, with 6 octagonal faces, double wrapped, needing 24 edges, and 16 vertices. It can be seen as regular map {8,3}2,0 on a hyperbolic plane with 6 colored octagons.

See also

Related Research Articles

In geometry, an octahedron is a polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. Many types of irregular octahedra also exist, including both convex and non-convex shapes.

<span class="mw-page-title-main">Polyhedron</span> Three-dimensional shape with flat faces, straight edges, and sharp corners

In geometry, a polyhedron is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.

<span class="mw-page-title-main">Truncated cube</span> Archimedean solid with 14 regular faces

In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces, 36 edges, and 24 vertices.

<span class="mw-page-title-main">Abstract polytope</span> Poset representing certain properties of a polytope

In mathematics, an abstract polytope is an algebraic partially ordered set which captures the dyadic property of a traditional polytope without specifying purely geometric properties such as points and lines.

<span class="mw-page-title-main">Heawood graph</span> Undirected graph with 14 vertices

In the mathematical field of graph theory, the Heawood graph is an undirected graph with 14 vertices and 21 edges, named after Percy John Heawood.

<span class="mw-page-title-main">Hexagonal tiling</span> Regular tiling of a two-dimensional space

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Small cubicuboctahedron</span>

In geometry, the small cubicuboctahedron is a uniform star polyhedron, indexed as U13. It has 20 faces (8 triangles, 6 squares, and 6 octagons), 48 edges, and 24 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry and topology, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Graph embedding</span> Embedding a graph in a topological space, often Euclidean

In topological graph theory, an embedding of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs are associated with edges in such a way that:

<span class="mw-page-title-main">Möbius–Kantor graph</span> Symmetric bipartite cubic graph with 16 vertices and 24 edges

In the mathematical field of graph theory, the Möbius–Kantor graph is a symmetric bipartite cubic graph with 16 vertices and 24 edges named after August Ferdinand Möbius and Seligmann Kantor. It can be defined as the generalized Petersen graph G(8,3): that is, it is formed by the vertices of an octagon, connected to the vertices of an eight-point star in which each point of the star is connected to the points three steps away from it.

In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces.

<span class="mw-page-title-main">Nauru graph</span> 24-vertex symmetric bipartite cubic graph

In the mathematical field of graph theory, the Nauru graph is a symmetric, bipartite, cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru.

<span class="mw-page-title-main">Toroidal polyhedron</span> Partition of a toroidal surface into polygons

In geometry, a toroidal polyhedron is a polyhedron which is also a toroid, having a topological genus of 1 or greater. Notable examples include the Császár and Szilassi polyhedra.

<span class="mw-page-title-main">Coxeter notation</span> Classification system for symmetry groups in geometry

In geometry, Coxeter notation is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.

<span class="mw-page-title-main">Klein graphs</span>

In the mathematical field of graph theory, the Klein graphs are two different but related regular graphs, each with 84 edges. Each can be embedded in the orientable surface of genus 3, in which they form dual graphs.

<span class="mw-page-title-main">3-3 duoprism</span>

In the geometry of 4 dimensions, the 3-3 duoprism or triangular duoprism is a four-dimensional convex polytope.

<span class="mw-page-title-main">Petrie dual</span>

In topological graph theory, the Petrie dual of an embedded graph is another embedded graph that has the Petrie polygons of the first embedding as its faces.

References

  1. Nedela (2007)
  2. Coxeter & Moser (1980)
  3. 1 2 Séquin (2013)
  4. Coxeter 1980, 8.3 Maps of type {4,4} on a torus.
  5. Coxeter 1980, 8.4 Maps of type {3,6} or {6,3} on a torus.
  6. Coxeter and Moser, Generators and Relations for Discrete Groups, 1957, Chapter 8, Regular maps, 8.3 Maps of type {4,4} on a torus, 8.4 Maps of type {3,6} or {6,3} on a torus
  7. https://web.archive.org/web/20181126084335/https://sites.math.washington.edu/~grunbaum/Your%20polyhedra-my%20polyhedra.pdf [ bare URL PDF ]

Bibliography